Работа является липидом

Липиды в крови: что это такое, важные факты о липидах

Липиды – это жирные органические соединения или частицы в организме, которые плохо растворимы в воде и в целом ощущаются жирными на ощупь. Наиболее важными липидами в крови являются жирные кислоты, холестерин, эфиры холестерина (холестерин, соединенный с жирной кислотой), триглицериды (три жирные кислоты, соединенные с трехуглеродным глицерином), а также фосфолипиды, такие как лецитин.

Что такое липиды в крови

  • Липиды – это жироподобные вещества, присутствующие в вашей крови и тканях тела.
  • Ваш организм нуждается в небольшом количестве липидов для нормальной работы.

Как измерить количество липидов в крови

  • С помощью анализа крови под названием «липидный профиль».
  • Этот анализ рекомендуют делать утром на голодный желудок.

Что произойдет, если уровень липидов слишком высок

Избыточное количество липидов в крови может вызвать жировые отложения на стенках артерий (холестериновые бляшки), увеличивая риск развития сердечно-сосудистых заболеваний.

Какие существуют виды липидов

Холестерин является основным липидом. Он состоит из различных составляющих, таких как:

  • Липопротеины низкой плотности (ЛПНП), или «плохой» холестерин, является основным липидом, который вызывает накопление жиров на стенках артерий, что со временем приводит к их значительному сужению и развитию такого заболевания, как атеросклероз,со всеми вытекающими последствиями в виде инфарктов миокарда и инсультов, вплоть до летального исхода.
  • Липопротеины высокой плотности (ЛПВП), или «хороший» холестерин, который помогает предотвратить накопление холестерина на стенках ваших артерий.
  • Триглицериды являются еще одним липидом, который может привести к увеличению риска развития сердечно-сосудистых заболеваний.

Каков нормальный уровень липидов

  • Общий уровень холестерина должен быть меньше, чем 200.
  • Уровень ЛПВП должен быть 40 или выше.
  • Уровень ЛПНП должен быть меньше 100. Спросите об этом вашего врача.
  • Уровень триглицеридов должен быть меньше 150.

Что можно сделать, если уровень липидов в крови далек от нормы

  • Ваш врач может порекомендовать вам придерживаться диеты с низким содержанием насыщенных жиров и холестерина.
  • Вам также может понадобиться повысить уровень физической активности.
  • В некоторых случаях, возможно, также необходимо принимать лекарства, чтобы помочь снизить уровень липидов в крови.

Причины нарушения уровня липидов в крови и пути решения

Уровень холестерина ЛПНП может быть повышен путем потребления продуктов, содержащих насыщенные жиры (присутствуют в животных жирах, молочных жирах и пальмовом масле); частично гидрогенизированных жиров, таких как кондитерский жир (добавляется в жаренные продукты быстрого питания (фаст-фуд), кондитерские изделия, а также некоторые закуски, такие как картофельные чипсы); и холестерина (слишком много содержится в яичных желтках, мясе, печени, а также в кальмарах или креветках).

Гипотиреоз или определенные типы почечной недостаточности также могут повысить уровень холестерина ЛПНП. Лекарственные препараты, снижающие уровень холестерина ЛПНП включают статины (ингибиторы 3-гидрокси-3-метилглютарил-кофермент А редуктазы), популярную группу препаратов, ингибирующих важный фермент в синтезе холестерина; секвестранты желчных кислот, связывающих соли желчных кислот в стуле, заставляя печень синтезировать дополнительный объем солей желчных кислот из холестерина; и ниацин (витамин B3).

Триглицериды, повышение уровня которых было связано с развитием ишемической болезни сердца, увеличиваются в основном в связи с генетическими факторами, но также избыточным объемом жира в брюшной полости; избыточным потреблением простых сахаров, содержащихся в фруктовых соках, прохладительных напитках и пр.; эстрогенами; глюкокортикоидами; избыточным потреблением алкоголя; резистентностью к инсулину и сахарным диабетом.

Триглицериды могут быть снижены путем уменьшения массы тела; увеличения физической активности; сокращения потребления простых сахаров и избытка углеводов, присутствующих в рационе питания; контроля уровня глюкозы в крови у больных сахарным диабетом; приема препаратов фибриновой кислоты (Гемфиброзил, Фенофибрат); приема никотиновой кислоты и рыбьего жира (в высоких дозах).

Низкий уровень холестерина ЛПВП увеличивает риск развития ишемической болезни сердца. Это чаще всего вызвано генетическими факторами, но также снижение его уровня может быть связано с курением; абдоминальным ожирением; малой физической активностью; резистентностью к инсулину и сахарным диабетом; а также приемом внутрь андрогенов (мужских половых гормонов).

ЛПВП холестерин может быть повышен путем отказа от курения; существенного увеличения физической активности; снижения массы тела; значительного снижения употребления алкоголя; снижения повышенного уровня триглицеридов в крови; постменопаузального применения эстрогена; приема ниацина в умеренных — высоких дозах; приема препаратов фибриновой кислоты; статинов; и секвестрантов желчных кислот.

Эта статья была полезна для вас? Поделитесь ей с другими!

Источник: www.magicworld.su

Работа является липидом

• В мембранах образуются многочисленные производные липидов, представляющие собой вторичные мессенджеры

• В ответ на различные стимулы, фосфолипазы С высвобождают растворимые вторичные мессенджеры липидной природы

• Наряду с сигналами от других источников, функционирование каналов и переносчиков находится под контролем различных липидов

• Изменение формы клеток и их подвижности находится под контролем PIP3, который образуется под действием PI 3-киназы

• PLD и PLA2 участвуют в образовании вторичных мессенджеров липидной природы

Для сигналов, возникающих в плазматической мембране, в цитоплазме или в клеточных органеллах, существуют растворимые мишени, обладающие регуляторными функциями, однако интегральные белки плазматической мембраны также являются объектом строгого контроля. Для них, в первую очередь, основную роль играют вторичные мессенджеры липидной природы.

Читайте также:  Отзывы о таблетках сементал

Эти липиды, образующиеся из мембранных фосфолипидов или других источников, выполняют многочисленные функции в процессах внутриклеточной передачи сигналов. Поскольку их исследование представляется гораздо более сложной задачей, чем исследование растворимых мессенджеров, многое еще остается непонятным. На рисунке ниже представлена структура некоторых из этих производных липидов.

Фосфолипазы С (PLCs) представляют собой прототипы ферментов метаболизма сигнальных липидов. Изоформы PLC катализируют гидролиз фосфолипидов между 3-sn-гидроксильной и фосфатной группами, что приводит к образованию диацилглицерина и фосфорного эфира. В клетках животных и у грибов, PLC, специфичные по отношению к фосфатидилинозитол-4,5-дифосфату (PIP2), гидролизуют его, образуя два вторичных мессенджера: 1,2-sn-диацилглицерин (DAG) и инозитол-1,4,5-трифосфат (IP3).

PIP2, который является субстратом PLC, сам является важнейшим регуляторным лигандом, который контролирует активность нескольких ионных каналов, переносчиков и ферментов. Таким образом, PLC изменяет концентрацию трех вторичных мессенджеров, и его суммарный эффект определяется скоростью оборота субстрата и продуктов.

Вероятно, DAG является наиболее хорошо известным вторичным мессенджером липидной природы: гид-рофобность ограничивает его функционирование мембранами. DAG активирует некоторые изоформы проте-инкиназы С (РКС), контролирует активность некоторых катионных каналов, и активирует, по крайней мере, еще одну из протеинкиназ. При дальнейшем гидролизе DAG дает арахидоновую кислоту, которая может регулировать некоторые ионные каналы.

Арахидоновая кислота также служит предшественником таких продуктов окисления, как простагландины и тромбоксаны, которые являются мощными внеклеточными генераторами сигналов. Для активации РКС, наряду с DAG, необходимо их взаимодействие с ионами кальция и с такими кислыми фосфолипидами, как фосфатидилсерин. Таким образом, для активации РКС необходимо совпадение нескольких входных сигналов, приводящих как к генерации DAG, так и к увеличению внутриклеточной концентрации Са 2+ .

Известно более десяти РКС, которые на основании наличия консервативной последовательности в их каталитическом домене относятся к одной группе. Также известны три подгруппы РКС, для которых характерно наличие общей последовательности, но которые проявляют различные регуляторные свойства. Эти киназы иллюстрируют многообразие путей регуляции, характерных для остальных протеинкиназ млекопитающих.

Строение некоторых вторичных мессенджеров липидной природы и общего предшественника фосфатидилинозитола.
Показанная структура ацильной боковой цепи является общей для PI липидов млекопитающих.
В клетках большая часть РА образуется из фосфатидилхолина, и его ацильные цепи могут отличаться от представленных на рисунке.

Первая из этих групп, канонические РКС, обычно представляет собой растворимые, или слабо связанные с мембранами ферменты. Их связь с мембранами остается слабой до того момента, пока не появится DAG. Последний приводит к упрочению их связывания с мембранами и к активации при связывании с другими регуляторами. Для второй группы РКС необходимы близкие по структуре липиды, но не обязательно наличие ионов Са2+. Для ферментов третьей группы необходимы другие липиды, однако для активации не требуются DAG и ионы Са 2+ .

N-концевой участок РКС содержит псевдосубстрат-ный домен, представляющий собой последовательность, напоминающую таковую типичного субстрата, за исключением замены Ser на Ala. Псевдосубстратный домен связывается с активным сайтом, чтобы ингибировать активность киназы. Активаторы смещают псевдосубстратный домен с активного сайта. Подобно многим другим протеинкиназам, обладающим отдельными аутоингибиторными доменами, РКС также активируются за счет протеолиза.

Протеазы отщепляют гибкий участок молекулы, что приводит к утрате регуляторного домена и последующей активации киназы.

Протеинкиназа С (РКС) является основным рецептором форболовых эфиров, которые представляют собой мощные промоторы опухолевого роста. Они имитируют DAG и вызывают более сильную и продолжительную активацию, чем физиологические стимуляторы. Столь мощная стимуляция может индуцировать протеолиз РКС, что приводит к снижению уровня фермента или к его полной деградации.

Второй продукт, образующийся при действии PLC, представляет собой IP3, который является растворимым вторичным мессенджером. Наиболее важной мишенью IP3 является Са2+-канал эндоплазматического ретикулул-ма. IP3 вызывает открытие этого канала и выход Са2+ из депо в цитоплазму. При этом уровень кальция в цитозоле быстро увеличивается более чем в 100 раз, что, в свою очередь, приводит к активации множества белков, которые служат для него мишенями.

Известно, по меньшей мере, шесть семейств РIР2-селективных PLC ферментов, которые отличаются друг от друга по формам регуляции, доменной структуре и по общим консервативным последовательностям. Они обладают сходными каталитическими доменами. PLC-bs стимулируются главным образом Gaq и Gby (в различной степени). Активность некоторых ферментов изменяется при фосфорилировании. Изоформы PLC-y стимулируются фосфорилированием по Tyr остаткам, часто это происходит с участием рецепторной тирозинкиназы. Изоформы PLC-ε контролируются небольшими мономерными G-белками, входящими в семейство Rho. Вопросы регуляции изоформ PLC-δ исследованы недостаточно.

Недавно обнаружены еще два класса ферментов, аналогичные PLC-δ, PLC-η и ζ (PLC-a не существует). Наряду со специфическими формами регуляции, все PLC стимулируются ионами Са2+, и часто кальций проявляет синергизм с другими стимуляторами. Этот синергизм обеспечивает интенсификацию и пролонгирование передачи сигнала с участием ионов кальция, которые наблюдаются во многих клетках.

Фосфолипазы А2 и D (PLA2 и PLD) также гидролизуют фосфолипиды глицерина в мембранах клетки, образуя при этом важнейшие компоненты системы передачи сигналов. PLA2 гидролизует жирную кислоту, которая во многих фосфолипидах находится в положении sn2. При этом образуется близкий по структуре фосфолипид, и свободная жирная, обычно ненасыщенная, кислота. Чаще всего это арахидоновая кислота, которая является предшественником внеклеточных сигнальных молекул. Биологическая роль свободных фосфолипидов до конца не выяснена, однако она, по-видимому, связана с их влиянием на структуру мембранного бислоя.

Читайте также:  Статины блокирующие синтез холестерина в печени

PLD катализирует реакцию аналогично PLC, однако при действии D-формы гидролизуется фосфодиэфирная связь со стороны замещения у фосфатной группы; при этом образуется 3-sn-фосфатидная кислота. Клеточные PLD действуют на многочисленные фосфолипиды, однако фосфатидилхолин, вероятно, представляет собой субстрат, в наибольшей степени имеющий отношение к сигнальным функциям. Функции фосфатидной кислоты, которая также образуется при фосфорилировании DAG, выяснены пока недостаточно, однако, вероятно, она играет определенную роль в процессах секреции и слияния внутриклеточных мембран.

Источник: meduniver.com

Функции липидов

Липиды выступают важнейшим источником энергетического запаса организма. Факт очевиден даже на номенклатурном уровне: греческое «липос» переводится как жир. Соответственно, категория липидов объединяет жироподобные вещества биологического происхождения. Функционал соединений достаточно разнообразен, что обусловлено неоднородностью состава данной категории био-объектов.

Какие функции выполняют липиды

Перечислите основные функции липидов в организме, которые являются основными. На ознакомительном этапе целесообразно выделить ключевые роли жироподобных веществ в клетках организма человека. Базовый перечень – это пять функций липидов:

  1. резервно-энергетическая;
  2. структурообразующая;
  3. транспортная;
  4. изолирующая;
  5. сигнальная.

К второстепенным задачам, которые липиды выполняют в сочетании с другими соединениями можно отнести регуляторную и ферментативную роль.

Энергетический запас организма

Это не только одна из важных, но приоритетная роль жироподобных соединений. По сути, часть липидов является.источником энергии всей клеточной массы. Действительно, жир для клеток – аналог топлива в баке автомобиля. Реализуется энергетическая функция липидами следующим образом. Жиры и подобные им вещества окисляются в митохондриях, расщепляясь до уровня воды и двуокиси углерода. Процесс сопровождается выделением значительного количества АТФ – высокоэнергетических метаболитов. Их запас позволяет клетке участвовать в энергозависимых реакциях.

Структурные блоки

Одновременно, липиды осуществляют строительную функцию: с их помощью формируется мембрана клетки. В процессе участвуют следующие группы жироподобных веществ:

  1. холестерин – липофильный спирт;
  2. гликолипиды – соединения липидов с углеводами;
  3. фосфолипиды – эфиры сложных спиртов и высших карбоновых кислот.

Следует отметить, что в сформировавшейся мембране, непосредственно жиры не содержатся. Образовавшаяся стенка между клеткой и внешней средой оказывается двухслойной. Это достигается вследствие бифильности. Подобная характеристика липидов указывает, что одна часть молекулы – гидрофобна, то есть нерастворима в воде, вторая, напротив – гидрофильна. Как результат, бислой клеточной стенки формируется вследствие упорядоченного расположения простых липидов. Молекулы разворачиваются гидрофобными участками друг к другу, тогда как гидрофильные хвосты направлены внутрь и вне клетки.

Это определяет защитные функции мембранных липидов. Во-первых, мембрана придает клетке форму и даже сохраняет ее. Во-вторых, двойная стенка – своеобразный пункт паспортного контроля, не пропускающий через себя нежелательных визитеров.

Автономная система отопления

Конечно, это наименование достаточно условно, но вполне применимо, если рассматривать какие функции выполняют липиды. Соединения не столько отапливают организм сколько удерживают тепло внутри. Подобная роль отведена жировым отложениям, формирующимся вокруг различных органов и в подкожной ткани. Этот класс липидов характеризуется высокими теплоизолирующими свойствами, что предохраняет жизненно-важные органы от переохлаждения.

«Золотой» запас индивидуума

Дополнительно, жировые отложения выполняют резервную функцию. Это фактически кладезь энергии, используемый организмом при необходимости, Как пример, голодание или интенсивные физические нагрузки. Весь механизм осуществляется при содействии адипоциты. Это специальные клетки, строение и функции которых тесно связаны с триглицеридами. Жир занимает подавляющий объем адипоцитов.

Такси заказывали?

Транспортную роль липидов относят к второстепенной функции. Действительно, перенос веществ (преимущественно триглицеридов и холестерина) осуществляется отдельными структурами. Это связанные комплексы липидов и белков, именуемые липопротеины. Как известно, жироподобные вещества нерастворимы в воде, соответственно плазме крови. Напротив, функции белков включают гидрофильность. Как результат, ядро липопротеида – скопление триглицеридов и эфиров холестерина, тогда как оболочка – смесь молекул протеина и свободного холестерола. В таком виде, липиды доставляются к тканям или обратно в печень для вывода из организма.

Второстепенные факторы

Список уже перечисленных 5 функций липидов, дополняет ряд не менее важных ролей:

Сигнальная функция

Некоторые сложные липиды, в частности их строение, позволяют передавать нервные импульсы между клетками. Посредником в подобном процесс выступают гликолипиды. Не менее важным оказывается способность распознавать внутриклеточные импульсы, также реализуемая жироподобными структурами. Это позволяет отбирать из крови необходимые клетке вещества.

Ферментативная функция

Липиды, независимо от расположения в мембране или вне ее – не входят в состав ферментов. Однако, их биоснтез происходит с присутствием жироподобных соединений. Дополнительно, липиды участвуют в выполнении защиты стенок кишечника от ферментов поджелудочной железы. Избыток последних нейтрализуется желчью, где в значительных количествах включены холестерин и фосфолипиды.

Регуляторная функция

Еще одна роль, которую для называют второстепенной. Не участвуя непосредственно в регулирующих процессах, липиды входят в состав соединений, осуществляющих подобные функции. В частности, это мембрана клетки, выполняющая пропускной режим. Другим примером выступают стероидные гормоны, регулирующие обмен веществ, репродуктивную способность, и иммунную защиту организма.

Перечень функций липидов не ограничивается рассмотренными случаями, но позволяет понять уровень важности веществ для человека.

Читайте также:  Липиды и их формулы

Окисление липидов в организме – это различные типы реакций, которые имеют как положительные, так и отрицательные последствия для человеческого организма.

Синтез липидов – этот процесс не может начинаться сразу после поступления жиров в желудок или кишечник. Для этого необходим процесс всасывания, который имеет свои особенности.

Соединения липидов – это обширный класс химических элементов, включающий жиры, воски, определенные гормональные вещества. Их невозможно растворить в воде.

Синтез липидов – этот процесс не может начинаться сразу после поступления жиров в желудок или кишечник. Для этого необходим процесс всасывания, который имеет свои особенности.

Источник: sosudportal.ru

Липидный состав крови: расшифровка и диагноз

Что означают показатели липидограммы и когда высокий уровень «хорошего» холестерина — это плохо

Содержание в крови различных жиров и их соотношений — важный показатель состояния здоровья человека. В ряде случаев он нуждается в пристальном контроле, а иногда и в коррекции. Разберемся, откуда в крови жиры и как за ними уследить.

Роль жиров в организме

Мембраны всех клеток нашего организма представляют собой двойной липидный слой. Нервные волокна, покрытые слоем миелина (вещества, на 75 % состоящего из жиров), проводят импульс в сотни раз быстрее, чем «голые» волокна.

Без жиров не работают жирорастворимые витамины D, E, K, A (поэтому морковный салат лучше заправлять растительным маслом). На основе молекулы холестерина строятся гормоны — половые, глюкокортикостероидные. И даже жировые складки на теле с точки зрения природы имеют глубокий смысл: это и амортизатор, и утеплитель, и запас на случай голода.

И в то же время избыток жиров является признанным фактором риска для многих болезней, от атеросклероза до сахарного диабета. Физические отложения жира вокруг и внутри органов затрудняют их работу. Кроме того, жир — гормонально активное вещество, и его избыток вмешивается в работу эндокринной системы, нарушая баланс.

Основные жиры, поступающие в организм извне, — это триглицериды (нейтральные жиры) и холестерин. Триглицериды используются в основном как запасное вещество и субстрат для выработки энергии. Холестерин — это база для синтеза стероидных гормонов, желчных кислот и витамина D.

Виды липопротеинов в крови

Жир не может путешествовать в крови в виде обычной капли, как в супе. Транспортируются жиры в организме в виде липопротеинов (ЛП) — соединений жиров с белками. После всасывания жировые молекулы образуют конгломераты с белковыми, причем часть белков является своеобразным ярлыком — адресом, по которому надо доставить жиры. Чем больше в липопротеине белка, тем выше будет его плотность.

Если вы сдадите анализ крови на липидограмму (липидный спектр), вы увидите там такие названия:

  • ЛПНП — липопротеины низкой плотности. Белков немного, жиров много, направление движения — от печени к тканям, в которых липиды должны быть использованы.
  • ЛПОНП — липопротеины очень низкой плотности. Соотношение еще больше сдвинуто в сторону липидов, причем в основном «запасных», а направляются эти частицы в жировую ткань для ее пополнения.
  • ЛПВП — липопротеиды высокой плотности. В этих частицах много белков, и они несут холестерин «на выход» из организма — его избыток будет выведен через печень.
  • ОХ — общий холестерин, т. е. содержащийся во всех видах ЛП в сумме. Каждый день холестерин и поступает с пищей, и вырабатывается самим организмом, и выводится с желчью. Поэтому существует термин «холестериновое равновесие» — 5,2–5,5 ммоль/л в крови. При таком уровне и риск атеросклероза минимален, и на строительство всех нужных веществ холестерина хватит.
  • ТГ — сумма триглицеридов во всех ЛП.

Хорошо, плохо и слишком хорошо

Кажется, надо бороться за то, чтобы ЛПВП было много, а всех остальных — поменьше. Тогда холестерин и триглицериды будут двигаться в сторону выхода через желчь, а не в сторону накопления в виде атеросклеротических бляшек и жировых складок. В популярной литературе часто называют ЛПВП «хорошим холестерином», а ЛПНП и ЛПОНП — «плохим» (хотя, строго говоря, это и не совсем холестерин).

Читайте также:
Холестерин: лечение

Но существует парадоксальная, казалось бы, ситуация, когда чрезмерно высокий уровень ЛПВП говорит не об отличной защите от атеросклероза, а о серьезной угрозе здоровью.

Представьте липопротеин в виде вагончика, который нагружен холестерином и везет его в печень для выброса через желчь. Когда вагончик добирается до печени, его должен кто-то разгрузить. «Грузчиком» в печени работает белок SR-B1, который кодируется геном SCARB1.

При недостаточной работе этого гена «грузчиков» не хватает, и выведение холестерина из организма тормозится. Хорошего ЛПВП становится много, очень много — в два-три раза выше максимальной нормы, и теперь уже он не столько выводится, сколько накапливается в организме. В итоге состояние сосудов прогрессивно ухудшается.

Поэтому следует иметь в виду, что у каждого лабораторного показателя не зря существуют верхняя и нижняя границы. И если чего-то — даже «хорошего» — больше нормы, это может быть небезопасно. Контролируйте липидограмму ежегодно и будьте здоровы!

Источник: apteka.ru