Окисление липидов биологическое значение

Окисление жирных кислот изменяет свойства клеточных мембран

Среди первичных механизмов повреждения клеток при окислительном стрессе лидирует окисление жирнокислотных остатков в фосфолипидах мембран. Это снижает их гидрофобность и нарушает устойчивость мембран, изменяет работу мембраносвязанных ферментов, повышает проницаемость мембран для ионов.

Реакции взаимодействия свободных радикалов с жирными кислотами получили широкую известность в связи с их актуальностью в пищевой промышленности. Появление неприятного запаха и прогоркание продуктов – это является проявлением перекисного окисления липидов (ПОЛ).

Основным субстратом для свободно-радикальных реакций являются двойные связи полиненасыщенных жирных кислот. В клеточных мембранах полиненасыщенные жирные кислоты находятся в составе фосфолипидов и гликолипидов. Также большое количество фосфолипидов с полиненасыщенными жирными кислотами локализуется в оболочке липопротеинов высокой, низкой и очень низкой плотности, что имеет значение в патогенезе атеросклероза.

В результате свободнорадикального окисления жирных кислот образуются гидроперекиси и диеновые конъюгаты ( первичные продукты), которые очень нестабильны. При участии металлов переменной валентности они быстро метаболизируют во вторичные (альдегиды и диальдегиды) и третичные (шиффовы основания) продукты перекисного окисления липидов.

Перекисное окисление липидов включает в себя несколько стадий:

В момент инициации , например, гидроксил- радикалом атакуется метиленовая группа, расположенная между двойными связями, и выбивается атом водорода, восстанавливающий гидроксил-радикал до воды. Далее в жирной кислоте происходит перестановка двойной связи, смещение радикальной группы и взаимодействие ее с кислородом. В результате образуется липопероксильный радикал.

Дальнейшее взаимодействие полученного липопероксильного радикала с соседними жирными кислотами приводит к его нейтрализации и появлению новых липоперекисных радикалов, т.е. к развитию линейной цепной реакции с появлением новых окисленных жирных кислот.

Развитие реакций перекисного окисления липидов

Кроме линейного развития, может происходить ветвление реакции за счет получения гидроперекисью электронов от каких-либо металлов или при воздействии излучения.

Разветвление и обрыв реакций перекисного окисления липидов

Обрыв цепной реакции происходит при взаимодействии радикалов друг с другом или в реакции с различными антиоксидантами, например, витамином Е, который отдаёт электроны, превращаясь при этом в довольно стабильную окисленную форму.

Продукты перекисного окисления липидов

Первичными продуктами ПОЛ являются гидроперекиси жирных кислот, они подвергаются дальнейшему распаду с образованием вторичных продуктов ПОЛ – различных спиртов, кетонов, альдегидов и диальдегидов, эпоксидов и других соединений.

Наиболее реакционноспособным из вторичных продуктов ПОЛ является малоновый диальдегид (МДА), который способен образовывать ковалентные связи с NH2-группами белков и иных молекул с образованием шиффовых оснований.

Схема реакций образования малонового диальдегида

Роль малонового диальдегида

Малоновый диальдегид (МДА), образующийся при перекисном окислении липидов, способен реагировать с ε-NH2-группами лизина или N-концевыми аминокислотами белков, с NH2-группами фосфолипидов и гликозаминов. МДА формирует мостики внутри молекул и между ними с образованием шиффовых оснований.

Роль малонового диальдегида в образовании сшивок между белками

Роль малонового диальдегида в образовании сшивок между белками и фосфолипидами

В конечном результате после окислительной атаки в белках появляются поперечные сшивки внутри одной молекулы, между разными белками, между белками и фосфолипидами. Из-за этого активность ферментативных белков изменяется, возможности структурных и сократительных белков падают, каналообразующие белки мембраны деформируются и проницаемость мембран возрастает, жизнеспособность и функционирование клетки уменьшаются.

Источник: biokhimija.ru

Окисление липидов биологическое значение

В патогенезе многих патологических состояний важная роль принадлежит свободным радикалам и активируемому ими перекисному окислению липидов (ПОЛ). Известно, что в органических молекулах электроны на внешней электронной оболочке располагаются парами – одна пара на каждой орбитали. Свободные же радикалы отличаются от обычных молекул тем, что у них на внешней электронной оболочке имеется неспаренный электрон. Это делает радикалы химически активными, так как радикал либо стремится вернуть себе недостающий электрон, отняв его от окружающих молекул, либо отдать лишний. Следовательно, свободные радикалы могут представлять собой атом, группу атомов с неспаренным электроном.

Неспаренный электрон принято обозначать точкой. Так, например, радикал гидроксила обозначают НО * , радикал перекиси водорода – НОО * , радикал супероксида О2 *– . Все активные формы кислорода образуются в результате кислородных свободнорадикальных реакций (СРО).

Субстратом свободнорадикальных реакций в биологических системах может быть не только кислород, но и липиды, белки, нуклеиновые кислоты и другие вещества. Под ПОЛпонимают окисление посредством присоединения двух атомов кислорода к углероду с образованием липидных перекисей, липидных перекисных радикалов и других соединений. Непосредственным субстратом ПОЛ могут быть ненасыщенные жирные кислоты, которыми богат липидный слой клеточных и субклеточных мембран.

Читайте также:  Препарат для понижения холестерина

Процессам ПОЛ способствует активация фосфолипазы А2, запускающая метаболизм арахидоновой кислоты. При этом в конечном итоге образуются супероксиды – простагландины G2 и H2, физиологические усиливающие СРО. Активаторами фосфолипазы А2 могут быть цитокины (IL-1, TNFa), а также С5а фрагмент комплемента, тромбин и другие соединения.

Наличие активных форм кислорода (АФК) играет чрезвычайно важную роль. АФК необходимы не только для поддержания и регуляции «вязкости» мембраны, но и для «разборки» деструктивных (детритных) клеточных масс перед запуском процессов регенерации. Активные формы кислорода ответственны за противомикробную защиту. Миелопероксидаза (МП), переводя Н2О2 в галогенизированные формы радикалов кислорода, образует самые мощные бактерицидные агенты – * ОCl, * OBr, * OJ. При врождённой или приобретенной неддостаточности МП люди нежизнеспособны. Острые инфекционные заболевания сопровождаются обычно повышением синтеза МП. Особенно много МП, по сравнению с другими фагоцитами, в нейтрофилах, благодаря чему эти клетки активируются всего один раз и после реакции высвобождения лизосом гибнут.

Высокая окислительная способность кислорода, необходимая для тканевого дыхания, из пользы может превратиться во вред, если будет направлена на окисление различных субстратов живой клетки. Эти самопроизвольные неферментативные реакции всегда начинаются с одноэлектронного восстановления молекулярного кислорода, приводя к образованию супероксида (О2 *– ). Процесс образования в клетке О * 2 – протекает чрезвычайно медленно и в то же время грозит тяжелыми необратимыми последствиями, так как окисляются не специально выбранные субстраты дыхания, а любые ингредиенты цитоплазмы с подходящим потенциалом.

Кислород, будучи небольшой нейтральной молекулой, может чрезвычайно легко проникать через мембрану внутрь клетки. В то же время мембрана клетки является ловушкой для супероксида, так как О2 *– заряжен, а стало быть гидротирован и не может пройти сквозь мембранный барьер. В процессе эволюции в клетках появился особый фермент – супероксидисмутаза (СОД). СОД катализирует реакцию взаимодействия (дисмутации) двух супероксидных радикалов с образованием нейтральной Н2О2, способной с легкостью выходить из клетки:

В то же время превращение О2 *– в Н2О2 – далеко не безобидный процесс, ибо перекись водорода служит источником радикала НО * , наиболее опасного из продуктов реакции, вызванной одноэлектронным восстановлением атома кислорода.

Свободным радикалом, образуемым живыми клетками (эндотелиоцитами, различными фагоцитами, нейронами и др.), является монооксид азота ( * NO), часто называемый окисью азота. В присутствии соединений, содержащих SH-группы, из NO образуется фактор, расширяющий кровеносные сосуды. Недостаток этого фактора является основной причиной развития гипертонической болезни.

Предполагается, что цитотоксическое действие NO обусловлено его реакцией с супероксидом, благодаря чему создается пероксинитрит (O=N-O-ОН), который способен разлагаться с образованием радикального гидроксила *ОН, приводящего к повреждению клеток.

При образовании свободных радикалов в организме (это явление нередко называют окислительным стрессом) в результате процессов пероксидации липидов происходит нарушение свойств биологических мембран и функционирования клеток.

Так, ПОЛ сопровождается окислением тиоловых (сульфгидрильных) групп мембранных белков, обусловленным неферментативной реакцией SH-групп со свободными радикалами липидов. При этом образуются сульфгидрильные радикалы, которые могут преобразоваться в сульфоновую кислоту. Связанное с ПОЛ окисление белков в хрусталике глаза заканчивается его помутнением (катаракта). Немалую роль в патологии клетки играет активация ион-транспортных ферментов, в активный центр которых входят тиоловые группы и в первую очередь Са 2+ -АТФ-азы. Инактивация этого фермента в результате ПОЛ приводит к замедлению откачивания Са 2+ из клетки, и даже, наоборот, к входу Са 2+ в клетку, благодаря чему наступает её повреждение. Наконец, окисление сульфгидрильных групп мембранных белков приводит к появлению дефектов во внутреннем липидном слое мембран клеток и митохондрий. Через такие поры в клетку входят ионы Na + , а в митохондрии – ионы Ca 2+ . В результате внутри клетки и митохондрий повышается осмотическое давление, что приводит к повреждению и нарушению функции клетки.

Читайте также:  Прополис от холестерина как применять

Другой результат ПОЛ связан со способностью продуктов пероксидации увеличивать ионную проницаемость липидного слоя, в том числе для ионов Н + и Са 2+ , что сопровождается потерей митохондриями способности синтезировать АТФ, благодаря чему клетки оказываются в условиях энергетического голода.

Наконец, пероксидация ведёт к уменьшению стабильности липидного слоя, что может привести к электрическому пробою собственным мембранным потенциалом, или потенциалом действия. Электрический пробой приводит к полной потере мембраной её барьерных функций.

Для того чтобы перечисленные реакции были менее опасными, клетки используют ферменты каталазу, пероксидазы (глутатионпероксидазуи др.) и церулоплазмин. Каталаза расщепляет перекись водорода до кислорода и воды, а пероксидазы окисляют перекисью водорода специально выбранные для этой цели субстраты, например такие, как глютатион. Кроме того, имеются и другие антиоксиданты, которые способны реагировать без участия ферментов с продуктами одноэлектронного восстановления кислорода и другими радикалами. Одни из них (витамин Е, витамин А, каротиноиды, убихиноны) локализованы в мембране, другие (аскорбиновая кислота) находятся в самих клетках. Механизм действия этих веществ заключается в том, что они являются эшелоном обороны, подставляющим себя под удар реактивным производным кислорода и, окисляясь, прерывают опасную для клетки цепь реакций.

Из ряда липорастворимых антиоксидантов в мембране особый интерес представляют убихиноны(в частности, убихинол или коэнзим Q), как единственные полипреноиды, способные к синтезу de novo и обладающие ферментной системой регенерации от окислительных до восстановительных форм этих коферментов.

Таковы краткие представления о процессах перекисного окисления липидов.

Источник: studopedia.ru

Перекисное окисление липидов

Перекисному окислению липидов подвергаются полиненасыщенные ЖК, свободные или входящие в состав омыляемых липидов, при взаимодействии с активными формами кислорода.

Реакции переписного окисления липидов (ПОЛ) являются свободнорадикальными и по¬стоянно происходят в организме. Свободнора-дикальное окисление нарушает структуру мно¬гих молекул. В белках окисляются некоторые аминокислоты. В результате разрушается струк¬тура белков, между ними образуются ковалент-ные «сшивки», всё это активирует протеолити-ческие ферменты в клетке, гидролизующие повреждённые белки. Активные формы кисло¬рода легко нарушают и структуру ДНК. Неспе¬цифическое связывание Fe2+ молекулой ДНК облегчает образование гидроксильных радика¬лов, которые разрушают структуру азотистых оснований. Но наиболее подвержены действию активных форм кислорода жирные кислоты, содержащие двойные связи, расположенные через СН2-группу. Именно от этой СН2-группы свободный радикал (инициатор окисления) лег¬ко отнимает электрон, превращая липид, содер¬жащий эту кислоту, в свободный радикал.

ПОЛ — цепные реакции, обеспечивающие расширенное воспроизводство свободных ра¬дикалов, частиц, имеющих неспаренный элек¬трон, которые инициируют дальнейшее распро¬странение перекисного окисления.

В. ПОВРЕЖДЕНИЕ КЛЕТОК В РЕЗУЛЬТАТЕ

ПЕРЕКИСНОГО ОКИСЛЕНИЯ ЛИПИДОВ

Активные формы кислорода повреждают структуру ДНК, белков и различные мембран¬ные структуры клеток. В результате появления в гидрофобном слое мембран гидрофильных зон за счёт образования гидропероксидов жир¬ных кислот в клетки могут проникать вода, ионы натрия, кальция, что приводит к набуха¬нию клеток, органелл и их разрушению. Акти¬вация перекисного окисления характерна для многих заболеваний: дистрофии мышц (болезнь Дюшенна), болезни Паркинсона, при которых ПОЛ разрушает нервные клетки в стволовой части мозга, при атеросклерозе, развитии опу¬холей. Перекисное окисление активируется также в тканях, подвергшихся сначала ишемии, а затем реоксигенации, что происходит, напри¬мер, при спазме коронарных артерий и после¬дующем их расширении.

Такая же ситуация возникает при образова¬нии тромба в сосуде, питающем миокард. Формирование тромба приводит к окклюзии про¬света сосуда и развитию ишемии в соответству¬ющем участке миокарда (гипоксия ткани). Если принять быстрые лечебные меры по разрушению тромба, то в ткани восстанавливается снабже¬ние кислородом (реоксигенация). Показано, что в момент реоксигенации резко возрастает об¬разование активных форм кислорода, которые могут повреждать клетку. Таким образом, даже несмотря на быстрое восстановление кровооб¬ращения, в соответствующем участка миокарда происходит повреждение клеток за счёт актива¬ции перекисного окисления.

Изменение структуры тканей в результате

ПОЛ можно наблюдать на коже: с возрастом

увеличивается количество пигментных пятен

на коже, особенно на дорсальной поверхности

ладоней. Этот пигмент называют липофусцин,

представляющий собой смесь липидов и бел¬

ков, связанных между собой поперечными ко-

валентными связями и денатурированными в

результате взаимодействия с химически актив¬

Читайте также:  Оливковое масло и уровень холестерина

ными группами продуктов ПОЛ. Этот пигмент

фагоцитируется, но не гидролизуется фермен¬

тами лизосом, и поэтому накапливается в клет¬

ках, нарушая их функции. °

ПОЛ происходит не только в живых организ¬мах, но и в продуктах питания, особенно при

Процессы ПОЛ усиливаются при избытке катехоламинов (стресс), гипоксии, ишемии, повышенном содержании активных форм О2, снижении антиоксидантной защиты, повышенном содержании ненасыщенных жирных кислот.

Биологическое значение ПОЛ

Модифицирует физико-химические свойства биомембран: изменяется проницаемость, активность мембранных ферментов.

Регулирует окислительное фосфорилирование.

Синтез ряда гормонов (стероидных), простагландинов.

Контроль клеточного деления.

Участвует в адаптации организма.

Повышение ПОЛ при патологии приводит к:

Разрушению, фрагментации клеточных мембран, повреждению и гибели клеток.

ПОЛ модифицирует ЛП, особенно ЛПНП. Они легче проникают в сосудистую стенку, лучше захватываются макрофагами, что ускоряет развитие атеросклероза.

Продукт ПОЛ малоновый диальдегид (МДА) — токсичен, канцерогенен, мутагенен.

Источник: studfile.net

Перекисное окисление липидов (ПОЛ)

Перекисное окисление липидов (ПОЛ)

Реакции ПОЛ являются свободнорадикальными и постоянно протекают в организме, также как и реакции образования АФК.

В норме они поддерживаются на определенном уровне и выполняют ряд функций:

1. индуцируют апоптоз (запрограммированную гибель клеток);

2. регулируют структуру клеточных мембран и тем самым обеспечивают функционирование ионных каналов, рецепторов, ферментных систем;

3. обеспечивают освобождение из мембраны арахидоновой кислоты, из которой синтезируются биорегуляторы (простагландины, тромбоксаны, лейкотриены);

4. ПОЛ может выступать в качестве вторичного мессенджера, участвуя в трансформации сигналов из внешней и внутренней среды организма, обеспечивая их внутриклеточную передачу;

5. АФК участвуют в клеточном иммунитете и фагоцитозе.

Механизм ПОЛ:

1. Инициация. Инициирует реакцию чаще всего гидроксильный радикал, отнимающий водород от СН2- групп ненасыщенной жирной кислоты L, что приводит к образованию липидного радикала L•:

2. Развитие цепи. Развитие цепи происходит при присоединении кислорода, в результате чего образуется пероксидный радикал LOO• или пероксид липида LOOH (гидроперекиси липидов)

LOО• + LH ? LOOH + LR?•

3. Обрыв цепи. Развитие цепи может останавливаться при взаимодействии свободных радикалов между собой или при взаимодействии с различными антиоксидантами (витамином Е), которые являются донорами электронов:

LOO•? + L• ? LOOH + LH

L?•+ Витамин Е ? LH + Витамин Е•?

ВитаминТ Е• + L• ? LH + Витамин Е окисл

В результате ПОЛ происходит преобразование обычных липидов в первичные продукты ПОЛ (гидроперекиси липидов). Это приводит к появлению в мембранах участков («дыр»), через которые наружу выходит содержимое как самих клеток, так и их органелл.

Первичные продукты ПОЛ разрушаются с образованием вторичных продуктов ПОЛ: альдегидов, кетонов, малонового диальдегида, диеновых коньюгатов. Накоплением в крови малонового диальдегида (МДА) объясняется синдром интоксикации, сопровождающий многие заболевания внутренних органов. Реагируя с SH- и СН 3-группами белков, МДА подавляет активность цитохром-оксидаз (угнетая тем самым тканевое дыхание) и гидроксилаз. МДА обуславливает также ускоренное развитие атеросклероза.

При взаимодействии МДА с аминогруппами фосфолипидов образуются конечные продукты ПОЛ – Шиффовы основания. Примером этих соединений является пигмент липофусцин, появляющийся на оболочке глаза, на коже с возрастом. Липофусцин представляет собой смесь липидов и белков, связанных между собой поперечными ковалентными связями и денатурированными в результате взаимодействия с химически активными группами продуктов ПОЛ. Этот пигмент фагоцитируется, но не гидролизуется ферментами лизосом, накапливается в клетках, нарушая их функцию.

Негативные последствия активации ПОЛ:

1. Повреждение липидного бислоя мембран, в результате чего в клетки проникает вода, ионы натрия, кальция, что приводит к набуханию клеток, органелл и их разрушению.

2. Преждевременное старение клеток и организма в целом.

3. Взаимодействие высокореактивных продуктов ПОЛ с аминогруппами белков с образованием Шиффовых оснований.

4. Изменение текучести (вязкости) мембран, в результате чего нарушается транспортная функция мембран (функционирование ионных каналов).

5. Нарушение активности мембраносвязанных ферментов, рецепторов.

Активация ПОЛ характерна для многих заболеваний и патологических состояний:

1. атеросклероз и другие сердечнососудистого заболевания;

2. поражения ЦНС (болезнь Паркинсона, Альцгеймера);

3. воспалительные процессы любого генеза;

4. дистрофия мышц (болезнь Дюшенна);

5. онкологические заболевания;

6. радиационные поражения;

7. бронхолегочные патологии.

Данный текст является ознакомительным фрагментом.

Источник: bio.wikireading.ru