Метаболизм липидов схема

Метаболизм липидов схема

Характер метаболизма в тканях во многом определяется питанием. У человека и ряда других млекопитающих метаболическим превращениям подвергаются продукты, абсорбируемые после переваривания содержащихся в пище углеводов, липидов и белков. Это главным образом глюкоза, триацилглицерол и, аминокислоты. У жвачных животных (и в меньшей степени у других травоядных) целлюлоза переваривается симбиотическими микроорганизмами с образованием низших гомологов органических кислот (уксусной, пропионовой, масляной); тканевый метаболизм у этих животных адаптирован к утилизации в качестве основного субстрата низших жирных кислот.

Метаболизм углеводов (рис. 16.2)

У всех млекопитающих глюкоза в клетках превращается в пируват и лактат по метаболическому пути, который называется гликолизом. Для вступления на этот путь необходимо предварительное фосфорилирование. Гликолиз может протекать в отсутствие кислорода (анаэробно), если конечным продуктом является лактат. Ткани, которые потребляют кислород (аэробные условия), способны осуществлять превращение пирувата в ацетил-СоА, который далее может вступать в цикл лимонной кислоты; в этом цикле ацетил-СоА полностью окисляется до большая часть потенциальной свободной энергии процесса запасается в форме АТР в результате окислительного фосфорилирования (рис. 17.2). Таким образом, глюкоза служит главным видом топлива для многих тканей, однако она (а также ее метаболиты) участвует и в других процессах. 1. Глюкоза превращается в полимер гликоген, который

Рис. 16.2. Общая схема метаболизма углеводов с указанием главных конечных продуктов.

запасается в ряде тканей, в особенности в скелетных мышцах и в печени. 2. Субстрат пентозофосфатного пути является одним из промежуточных продуктов гликолиза. Этот путь служит источником восстановительных эквивалентов используемых в процессах биосинтеза, например в биосинтезе жирных кислот; кроме того, он является источником рибозы, необходимой для синтеза нуклеотидов и нуклеиновых кислот. 3. Трнозофосфат, образующийся на одной из стадий гликолиза, является источником глицерола, используемого в синтезе ацилглицеролов (жиров). 4. Пируват и ряд промежуточных соединений цикла лимонной кислоты—это источники углеродных скелетов, используемых в синтезе аминокислот, а ацетил-СоА служит основным строительным блоком в синтезе длинноцепочечных жирных кислот и холестерола—предшественника всех синтезируемых в организме стероидов.

Метаболизм липидов (рис. 16.3)

Источником длинноцепочечных жирных кислот служат синтез de novo из ацетил-СоА (в свою очередь образующегося из углеводов) и пищевые липиды. В тканях жирные кислоты могут либо окисляться до ацетил-СоА (Р-окисленне), либо эстерифицироваться в ацилглицеролы (триацилглицерол является главным энергетическим резервом организма). образующийся при -окислении, участвует в ряде важных процессов.

1. Ацетил-СоА может полностью окисляться до в цикле лимонной кислоты. Жирные кислоты являются источником значительных количеств энергии (тканевым топливом) при утилизации в процессе Р-окисления, а затем в ходе реакций цикла лимонной кислоты.

2. Ацетил-СоА служит источником атомов углерода для холестерола.

3. В печени из него образуется ацетоацетат — исходное кетоновое тело. Кетоновые тела являются альтернативным водорастворимым тканевым топливом, которое при определенных условиях может стать важным источником энергии (например, при голодании).

Метаболизм аминокислот (рис. 16.4)

Аминокислоты необходимы для синтеза белков. Некоторые из них должны обязательно поступать с пищей (незаменимые аминокислоты), поскольку ткани не способны их синтезировать. Остальные аминокислоты (заменимые) также поступают с пищей, но могут образовываться и из промежуточных метаболитов путем переаминировання, т. е. переноса аминогрупп от других аминокислот, присутствующих в избыточном количестве. После дезаминирования избыточный аминный азот удаляется в составе мочевины; остающийся после переаминировання углеродный скелет либо окисляется до в цикле лимонной кислоты, либо превращается в глюкозу (глюконеогенез) или кетоновые тела.

Рис. 16.3. Общая схема метаболизма липидов с указанием главных конечных продуктов. Кетоновые тела включают ацетоацетат, 3-гидроксибутират и ацетон.

Рис. 16.4. Общая схема метаболизма аминокислот с указанием главных конечных продуктов.

Помимо использования в синтезе белков аминокислоты служат предшественниками ряда важных соединений — пуринов, пиримидинов, гормонов (например, адреналина и тироксина).

Источник: scask.ru

Печень перекрещивает метаболизм углеводов, липидов и белков

Печень, являясь центральным органом метаболизма, участвует в поддержании метаболического гомеостаза и способна осуществлять взаимодействие реакций обмена белков, жиров и углеводов.

Местами «соединения» обмена углеводов и белков является пировиноградная кислота, щавелевоуксусная и α-кетоглутаровая кислоты из цикла трикарбоновых кислот, способных в реакциях трансаминирования превращаться, соответственно, в аланин, аспартат и глутамат. Аналогично протекает процесс превращения аминокислот в кетокислоты.

Читайте также:  Диета при повышенном сахаре и холестерине в крови у женщин

С обменом липидов углеводы связаны еще более тесно:

  • образуемые в пентозофосфатном пути молекулы НАДФН используются для синтеза жирных кислот и холестерола,
  • глицеральдегидфосфат , также образуемый в пентозофосфатном пути, включается в гликолиз и превращается в диоксиацетонфосфат,
  • глицерол-3-фосфат , образуемый из диоксиацетонфосфата гликолиза, направляется для синтеза триацилглицеролов. Также для этой цели может быть использован глицеральдегид-3-фосфат, синтезированный в этапе структурных перестроек пентозофосфатного пути,
  • «глюкозный» и «аминокислотный» ацетил-SКоА способен участвовать в синтезе жирных кислот и холестерола.

Взаимосвязь обмена белков, жиров и углеводов

Углеводный обмен

В гепатоцитах активно протекают процессы углеводного обмена. Благодаря синтезу и распаду гликогена печень поддерживает концентрацию глюкозы в крови. Активный синтез гликогена происходит после приема пищи, когда концентрация глюкозы в крови воротной вены достигает 20 ммоль/л. Запасы гликогена в печени составляют от 30 до 100 г. При кратковременном голодании происходит гликогенолиз, в случае длительного голодания основным источником глюкозы крови является глюконеогенез из аминокислот и глицерина.

Печень осуществляет взаимопревращение сахаров, т.е. превращение гексоз (фруктозы, галактозы) в глюкозу.

Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН, необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы.

Липидный обмен

Если во время приема пищи в печень поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы. Поскольку запасать ТАГ печень не может, то их удаление происходит при помощи липопротеинов очень низкой плотности (ЛПОНП). Холестерол используется, в первую очередь, для синтеза желчных кислот, также он включается в состав липопротеинов низкой плотности (ЛПНП) и ЛПОНП.

При определенных условиях – голодание, длительная мышечная нагрузка, сахарный диабет I типа, богатая жирами диета – в печени активируется синтез кетоновых тел, используемых большинством тканей как альтернативный источник энергии.

Белковый обмен

Больше половины синтезируемого за сутки в организме белка приходится на печень. Скорость обновления всех белков печени составляет 7 суток, тогда как в других органах эта величина соответствует 17 суткам и более. К ним относятся не только белки собственно гепатоцитов, но и идущие на «экспорт», составляющие понятие «белки крови» – альбумины, многие глобулины, ферменты крови, а также фибриноген и факторы свертывания крови.

Аминокислоты подвергаются катаболическим реакциям с трансаминированием и дезаминированием, декарбоксилированию с образованием биогенных аминов. Происходят реакции синтеза холина и креатина благодаря переносу метильной группы от аденозилметионина. В печени идет утилизация избыточного азота и включение его в состав мочевины.

Реакции синтеза мочевины теснейшим образом связаны с циклом трикарбоновых кислот.

Тесное взаимодействие синтеза мочевины и ЦТК

Пигментный обмен

Участие печени в пигментном обмене заключается в превращении гидрофобного билирубина в гидрофильную форму (прямой билирубин) и секреция его в желчь.

К пигментному обмену можно отнести и обмен железа, поскольку железо входит в состав многочисленных гемопротеинов по всему организму. В гепатоцитах находится белок ферритин, играющий роль депо железа, и синтезируется гепсидин, регулирующий всасывание железа в ЖКТ.

Оценка метаболической функции

В клинической практике существуют приемы оценки той или иной функции:

Участие в углеводном обмене оценивается:

  • по концентрации глюкозы крови,
  • по крутизне кривой теста толерантности к глюкозе,
  • по «сахарной» кривой после нагрузки галактозой,
  • по величине гипергликемии после введения гормонов (например, проба с адреналином).

Роль в липидном обмене рассматривается:

  • по концентрации в крови триацилглицеролов, холестерола, ЛПОНП, ЛПНП, ЛПВП,
  • по коэффициенту атерогенности.

Белковый обмен оценивается:

  • по концентрации общего белка и его фракций в сыворотке крови,
  • по показателям коагулограммы,
  • по уровню мочевины в крови и моче,
  • по активности ферментов АСТ и АЛТ, ЛДГ-4,5, щелочной фосфатазы, глутаматдегидрогеназы.

Пигментный обмен оценивается:

  • по концентрации общего и прямого билирубина в сыворотке крови.

Источник: biokhimija.ru

Метаболизм липидов схема

Печень является главным местом синтеза жирных кислот, жиров, кетоновых тел и холестерина. Жиры могут также синтезироваться в жировой ткани, однако ее основной функцией остается депонирование липидов.

Обмен липидов в печени тесно связан с превращением углеводов и аминокислот. При поступлении питательных веществ в фазе резорбции (см. с. 300) глюкоза через промежуточное образование ацетил-КоА (ацетил-СоА) конвертируется в жирные кислоты . Печень может также извлекать жирные кислоты из липопротеинов, поступающих из желудочно-кишечного тракта (в виде хиломикронов) и других тканей (см. с. 272). Жирные кислоты используются для биосинтеза триглицеринов и фосфолипидов . При связывании жиров с аполипопротеинами образуются липопротеиновые комплексы очень низкой плотности [ЛОНП (VLDL), см. с. 272]. Они попадают в кровь и переносятся в другие ткани, прежде всего в жировую и мышечную ткань.

Читайте также:  Глюкометр для измерения холестерина и мочевой кислоты

В фазе пострезорбции (см. с. 300), особенно в период поста или голодания, обмен липидов идет в обратном направлении, организм обращается к собственным запасам. В этих условиях жиры поступают из жировой ткани в кровь, переносятся в печень, распадаются в результате β-окисления до ацетил-КоА и, наконец, превращаются в кетоновые тела .

Холестерин поступает в организм из двух источников — с пищей и за счет эндогенного синтеза, причем большая часть холестерина синтезируется в печени. Биосинтез холестерина начинается с ацетил-КоА (см. с. 174). Полученный холестерин используется в синтезе желчных кислот (см. с. 306), встраивается в клеточные мембраны (см. с. 216), депонируется в жировых каплях в составе эфиров жирных кислот. Остальная часть поступает в кровь в составе липопротеиновых комплексов [ЛОНП (VLDL)] и переносится в другие ткани. Печень способствует обмену холестерина благодаря тому, что служит местом, худа поступают с кровью и где подвергаются расщеплению липопротеиновые комплексы [ЛВП, ЛПП, ЛНН (HDL, IDL, LDL), см. с. 272], содержащие холестерин и его эфиры с жирными кислотами.

При высокой концентрации ацетил-КоА в митохондриях гепатоцитов происходит конденсация двух молекул ацетил-КоА с образованием ацетоацетил-КоА [ 1 ]. Присоединение еще одной ацетильной группы [ 2 ] приводит к 3-гидрокси-З-метилглутарил-КоА (ГМГ-КоА) [ 3 ], который после отщепления ацетил-КоА превращается в ацетоуксусную кислоту (ацетоацетат) (цикл Линена). При восстановлении последней получается 3-гидроксибутират [ 4 ], а при неферментативном декарбоксилировании — ацетон [ 5 ]. Все три соединения принято называть «кетоновыми телами», что не совсем правильно, поскольку в 3-гидроксимасляной кислоте отсутствует кетогруппа!

Кетоновые тела поступают из печени в кровь, где они хорошо растворимы. Концентрация кетоновых тел в крови возрастает в фазе пострезорбции (фаза голодания). Наряду с жирными кислотами 3-гидроксибутират и ацетоацетат в этот период являются основными энергоносителями. Ацетон, не имеющий метаболической ценности, удаляется через легкие. После 1-2 недели голодания кетоновые тела начинают использоваться в качестве источника энергии нервными тканями. Однако при этом для обеспечения цитратного цикла необходимо минимальное количество глюкозы.

Если биосинтез кетоновых тел превышает потребности организма, они накапливаются в крови (кетонемия) и, наконец, выводятся с мочой (кетонурия). Оба феномена наблюдаются во время длительного голодания (углеводная недостаточность) и при заболеваний диабетом (Diabetes mellitis). Хотя 3-гидроксимасляная кислота является слабой кислотой (рК а примерно 4), возрастание концентрации кетоновых тел вызывает изменение рН в крови (кетоацидоз, см. с. 280). Кетонурия и кетоацидоз могут быстро привести к электролитному сдвигу (нарушению ионного гомеостаза) и потери сознания (кетоацидозной коме) и, следовательно, опасны для жизни.

Источник: www.xumuk.ru

Метаболизм жиров

Жиры — это группа природных веществ, присутствующих в клетках каждого растения и животного, особенно в жире наземных животных, морских млекопитающих и рыб, а также в семенах некоторых растений.

Что такое жиры

Жиры представляют собой химические триацилглицерины, то есть сложные эфиры жирных кислот с глицерином трехвалентного спирта. Это могут быть сложные эфиры только одной кислоты или, чаще всего, сложные эфиры двух или трех разных кислот.

Из многих жирных кислот наиболее насыщенными кислотами являются стеариновая и пальмитиновая кислоты, а также ненасыщенные олеиновая, линолевая и линоленовая кислоты. Консистенция жира при температуре окружающей среды зависит от типа отдельных жирных кислот; если жиры содержат больше ненасыщенных кислот, при комнатной температуре они жидкие и называются маслами.

Классификация жиров

Жиры и масла классифицируются по происхождению на животные жиры (молочный жир / масло, свиное сало, говяжий и овечий жир и птичий жир), рыбий жир, растительные масла (подсолнечное, соевое, рапсовое, оливковое, тыквенное, арахисовое, пальмовое) и растительные жиры (кокосовый жир, пальмовый жир, какао-масло).

Из животного сырья жир можно получить в виде готового продукта, просто расплавив и отделив твердый остаток. Переработка растительного масла в сырье намного сложнее и проходит в два этапа: производство неочищенного нерафинированного масла и его переработка. Прессование является очень старым процессом для производства растительных масел, и даже сегодня, без рафинирования, оно используется для некоторого сырья (оливки, тыквенные семечки, в последнее время и семена подсолнечника).

Читайте также:  Хороший препарат от холестерина отзывы

Роль жира в организме

Жиры являются важным компонентом в рационе человека. В современной диете основными источниками жира являются растительные масла, сало (особенно в мясных продуктах), сливочное масло и маргарин. Обильная жирная диета (особенно жир животных, который содержит много холестерина) не нужна, потому что жиры также могут синтезироваться в организме из веществ, полученных в результате расщепления углеводов и белков.

Жировой обмен начинается в кишечнике, где жиры сначала эмульгируются с помощью солей желчных кислот, вырабатываемых в печени.

Благодаря своему составу (много углерода и водорода, мало кислорода) натуральные жиры являются идеальным запасом метаболического топлива. Их энергетическая ценность в два раза выше, чем у углеводов и белков. В организме они хранятся в жировых запасах разных клеток, особенно в поверхностных жировых тканях, которые также выполняют функцию теплоизолятора. Сохраненные жиры используются в качестве энергетического топлива, особенно во время голодания. Печень использует жиры в качестве основного источника энергии при нормальной работе организма, в то время как мозг вообще не может их использовать. Чтобы обеспечить мозг энергией при недостатке глюкозы, жиры превращаются в кетоновые тела в печени.

Организм человека получает энергию из нескольких различных источников, и только один из них обеспечивает ее более чем в 20 раз больше, чем остальные, а именно, окисление жирных кислот.

Пищеварение в двенадцатиперстной кишке и тонкой кишке.

Окисление жирных кислот представляет собой процесс, в котором один триглицерид измельчается до 16-24 остатков пирувата, поскольку на следующей стадии каждая молекула пирувата входит в цикл Кребса, конечный продукт полного цикла состоит из 14 молекул АТФ.

Окисление жиров и доставка энергии

Условия, при которых организм переходит в режим окисления (говоря простым языком, «сжигания») жира для снабжения энергией, уже накопленной или только извлеченной из пищи, определяются концентрацией сахаров в крови, а также количеством гликогена в организме.

Есть несколько источников энергии, которые способны заряжать организм энергией, и только один источник, который их подключает. Реальная энергия для физического действия производится от разрушения макроэргических связей в молекуле аденозинтрифосфата (АТФ), которая является единственным источником чистой химической энергии, используемой человеческим организмом.

Для синтеза АТФ нужна энергия, которая впоследствии будет потребляться организмом, но сначала нужно откуда-то ее получить. Такими источниками являются жиры, белки, углеводы, нуклеиновые кислоты.

В нормальном состоянии (в состоянии покоя) клетка работает с несколькими видами топлива, чтобы обеспечить свои потребности в энергии. В первые 10 секунд при физическом действии используется количество АТФ, хранящегося в клетке, следующие почти 25 секунд задействуется креатинфосфат.

Если нагрузка продолжается, и топливо заканчивается, тогда приходит следующее — третье топливо — гликоген, сохраненный в ячейке для энергии. Четвертый источник — жир, пятый и шестой — аминокислоты и нуклеиновые кислоты.

При активной деятельности и после того, как запасы углеводов истощаются, нуждающиеся в энергии органы начинают посылать сигналы в ЦНС, а затем в печень, которая начинает метаболизировать собственный гликоген для поддержания уровня глюкозы в крови. Когда определенный процент сахара в крови истощается, механизмы жирового катаболизма доставляют почти в 4 раза больше энергии по сравнению с АК (аминокислоты) и НК (нуклеиновые кислоты). В состоянии стресса / голода или холода жир вовлекается раньше всех и активнее участвует в обмене веществ.

Это суть жирового обмена. Чтобы высвободить энергию, жиры должны транспортироваться в определенную часть клетки. В клетке существует несколько механизмов окисления жирных кислот — альфа, бета и омега, расположенных в нескольких ее частях. Барьером для доставки энергии является преодоление мембран клеточного энергетического центра (митохондрии). Будут ли они поступать напрямую или подвергаться обработке, зависит от длины углеродной цепи жирных кислот.

Источник: medicine-simply.ru