Липиды в схемах

Липиды

Строение

Липиды по химической природе – один из трёх типов жизненно важных органических веществ. Они практически не растворяются в воде, т.е. являются гидрофобными соединениями, но образуют с Н2О эмульсию. Липиды распадаются в органических растворителях – бензоле, ацетоне спиртах и т.д. По физическим свойствам жиры бесцветны, не имеют вкуса и запаха.

По строению липиды – соединения жирных кислот и спиртов. При присоединении дополнительных групп (фосфора, серы, азота) образуются сложные жиры. Жировая молекула обязательно включает атомы углерода, кислорода и водорода.

Жирные кислоты – алифатические, т.е. не содержащие циклических углеродных связей, карбоновые (группа -СООН) кислоты. Отличаются количеством группы -СН2-.
Выделяют кислоты:

  • ненасыщенные– включают одну или несколько двойных связей (-СН=СН-);
  • насыщенные– не содержат двойных связей между атомами углерода

Рис. 1. Строение жирных кислот.

В клетках запасаются в виде включений – капель, гранул, в многоклеточном организме – в форме жировой ткани, состоящей из адипоцитов – клеток, способных накапливать жиры.

Классификация

Липиды – сложные соединения, которые встречаются в различных модификациях и выполняют различные функции. Поэтому классификация липидов обширна и не ограничивается одним признаком. Наиболее полная классификация по строению приведена в таблице.

Общая характеристика

Нейтральные жиры. Относятся к сложным эфирам, состоящим из глицерина и жирных кислот. Различают моно-, ди- и триглицериды

Сложные эфиры жирных кислот и спиртов (одноатомных или двухатомных)

Образованы присоединением к липидам остатков фосфорной кислоты. Обширная группа, включающая две подгруппы:

Состоят из углеводов и липидов, образующие гидрофильно-гидрофобные комплексы

Описанные выше липиды относятся к омыляемым жирам – при их гидролизе образуется мыло. Отдельно в группу неомыляемых жиров, т.е. не взаимодействующих с водой, выделяют стероиды.
Они подразделяются на подгруппы в зависимости от строения:

  • стерины– стероидные спирты, входящие в состав животных и растительных тканей (холестерин, эргостерин);
  • желчные кислоты – производные холевой кислоты, содержащие одну группу -СООН, способствуют растворению холестерина и перевариванию липидов (холевая, дезоксихолевая, литохолевая кислоты);
  • стероидные гормоны – способствуют росту и развитию организма (кортизол, тестостерон, кальцитриол).

Рис. 2. Схема классификации липидов.

Отдельно выделяют липопротеины. Это сложные комплексы жиров и белков (аполипопротеинов). Липопротеины относят к сложным белкам, а не к жирам. В их состав входят разнообразные сложные жиры – холестерин, фосфолипиды, нейтральные жиры, жирные кислоты.
Выделяют две группы:

  • растворимые – входят в состав плазмы крови, молока, желтка;
  • нерастворимые– входят в состав плазмалеммы, оболочки нервных волокон, хлоропласты.

Рис. 3. Липопротеины.

Наиболее изучены липопротеины плазмы крови. Они различаются по плотности. Чем больше жиров, тем меньше плотность.

Липиды по физической структуре классифицируются на твёрдые жиры и масла. По нахождению в организме выделяют резервные (непостоянные, зависят от питания) и структурные (генетически обусловленные) жиры. По происхождению жиры могут быть растительными и животными.

Значение

Липиды должны поступать в организм вместе с пищей и участвовать в метаболизме. В зависимости от типа жиры выполняют в организме разнообразные функции:

  • триглицериды сохраняют тепло организма;
  • подкожный жир защищает внутренние органы;
  • фосфолипиды входят в состав мембран любой клетки;
  • жировая ткань является резервом энергии – расщепление 1 г жира даёт 39 кДж энергии;
  • гликолипиды и ряд других жиров выполняют рецепторную функцию – связывают клетки, получая и проводя сигналы, полученные из внешней среды;
  • фосфолипиды участвуют в свёртываемости крови;
  • воски покрывают листья растений, одновременно предохраняя их от высыхания и промокания.

Избыток или недостаток жиров в организме приводит к изменению обмена веществ и нарушению функций организма в целом.

Что мы узнали?

Жиры имеют сложное строение, классифицируются по разным признакам и выполняют разнообразные функции в организме. Липиды состоят из жирных кислот и спиртов. При присоединении дополнительных групп образуются сложные жиры. Белки и жиры могут образовывать сложные комплексы – липопротеины. Жиры входят в состав плазмалеммы, крови, ткани растений и животных, выполняют теплоизолирующую и энергетическую функции.

Источник: obrazovaka.ru

Липиды в схемах

Глава II. ЛИПИДЫ

§ 4. КЛАССИФИКАЦИЯ И ФУНКЦИИ ЛИПИДОВ

Липиды представляют собой неоднородную группу химических соединений, нерастворимых в воде, но хорошо растворимых в неполярных органических растворителях: хлороформе, эфире, ацетоне, бензоле и др., т.е. общим их свойством является гидрофобность (гидро – вода, фобия – боязнь). Из-за большого разнообразия липидов дать более точное определение им невозможно. Липиды в большинстве случаев являются сложными эфирами жирных кислот и какого-либо спирта. Выделяют следующие классы липидов: триацилглицерины, или жиры, фосфолипиды, гликолипиды, стероиды, воска, терпены. Различают две категории липидов – омыляемые и неомыляемые. К омыляемым относятся вещества, содержащие сложноэфирную связь (воска, триацилглицерины, фосфолипиды и др.). К неомыляемым относятся стероиды, терпены.

Читайте также:  Калорическая значимость липидов в пищевом рационе

Триацилглицерины, или жиры

Триацилглицерины являются сложными эфирами трехатомного спирта глицерина

и жирных (высших карбоновых) кислот. Общая формула жирных кислот имеет вид: R-COOH, где R – углеводородный радикал. Природные жирные кислоты содержат от 4 до 24 атомов углерода. В качестве примера приведем формулу одной из наиболее распространенной в жирах стеариновой кислоты:

В общем виде молекулу триацилгицерина можно записать так:

Если в состав триациоглицерина входят остатки различных кислот (R1 R2 R3), то центральный атом углерода в остатке глицерина становится хиральным.

Триацилглицерины неполярны и вследствие этого практически нерастворимы в воде. Основная функция триацилглицеринов – запасание энергии. При окислении1 гжира выделяется 39 кДж энергии. Триацилглицерины накапливаются в жировой ткани, которая, кроме депонирования жира, выполняет термоизолирующую функцию и защищает органы от механических повреждений. Более подробную информацию о жирах и жирных кислотах вы найдете в следующем параграфе.

Интересно знать! Жир, которым заполнен горб верблюда, служит, в первую очередь, не источником энергии, а источником воды, образующейся при его окислении.

Фосфолипиды содержат гидрофобную и гидрофильную области и поэтому обладают амфифильнымы свойствами, т.е. они способны растворяться в неполярных растворителях и образовывать стойкие эмульсии с водой.

Фосфолипиды в зависимости от наличия в их составе спиртов глицерина и сфингозина делятся на глицерофосфолипиды и сфингофосфолипиды.

В основе строения молекулы глицерофосфолипидов лежит фосфатидная кислота, образованная глицерином, двумя жирными и фосфорной кислотами:

В молекулах глицерофосфолипидов к фосфатидной кислоте сложноэфирной связью присоединена НО-содержащая полярная молекула. Формулу глицерофосфолипидов можно представить так:

где Х – остаток НО-содержащей полярной молекулы (полярная группировка). Названия фосфолипидов образуются в зависимости от наличия в их составе той или иной полярной группировки. Глицерофосфолипиды, содержащие в качестве полярной группировки остаток этаноламина,

носят название фосфатидилэтаноламинов, остаток холина

Формула фосфатидилэтаноламина выглядит так:

Глицерофосфолипиды отличаются друг от друга не только полярными группами, но и остатками жирных кислот. В их состав входят как насыщенные (состоящие обычно из 16 – 18 атомов углерода), так и ненасыщенные (содержащие чаще 16 – 18 атомов углерода и 1 – 4 двойные связи) жирные кислоты.

Сфингофосфолипиды по составу сходны с глицерофосфолипидами, но вместо глицерина содержат аминоспирт сфингозин:

Наиболее распространенными сфингофосфолипидами являются сфингомиелины. Они образованы сфингозином, холином, жирной кислотой и фосфорной кислотой:

Молекулы как глицерофосфолипидов, так и сфингофосфолипидов состоят из полярной головы (образована фосфорной кислотой и полярной группировкой) и двух углеводородных неполярных хвостов (рис.1). У глицерофосфолипидов оба неполярных хвоста являются радикалами жирных кислот, у сфингофосфолипидов – один хвост является радикалом жирной кислоты, другой – углеводородной цепочкой спирта сфингазина.

Рис. 1. Схематическое изображение молекулы фосфолипида.

При встряхивании в воде фосфолипиды спонтанно формируют мицеллы, в которых неполярные хвосты собираются внутри частицы, а полярные головы располагаются на ее поверхности, взаимодействуя с молекулами воды (рис. 2а). Фосфолипиды способны образовывать также бислои (рис. 2б) и липосомы – замкнутые пузырьки, окруженные непрерывным бислоем (рис. 2в).

Рис. 2. Структуры, образуемые фосфолипидами.

Способность фосфолипидов, образовывать бислой, лежит в основе формирования клеточных мембран.

Гликолипиды

Гликолипиды содержат в своем составе углеводный компонент. К ним относятся гликосфинголипиды, содержащие, кроме углевода спирт, сфингозин и остаток жирной кислоты:

Они так же, как и фосфолипиды, состоят из полярной головы и двух неполярных хвостов. Гликолипиды располагаются на внешнем слое мембраны, являются составной частью рецепторов, обеспечивают взаимодействие клеток. Их особенно много в нервной ткани.

Стероиды

Стероиды являются производными циклопентанпергидрофенантрена (рис. 3). Один из важнейших представителей стероидов – холестерин. В организме он встречается как в свободном состоянии, так и в связанном, образуя сложные эфиры с жирными кислотами (рис. 3). В свободном виде холестерин входит в состав мембран и липопротеинов крови. Сложные эфиры холестерина являются его запасной формой. Холестерин является предшественником всех остальных стероидов: половых гормонов (тестостерон, эстрадиол и др.), гормонов коры надпочечников (кортикостерон и др.), желчных кислот (дезоксихолевая и др.), витамина D (рис. 3).

Интересно знать! В организме взрослого человека содержится около 140 г холестерина, больше всего его находится в нервной ткани и надпочечниках. Ежедневно в организм человека поступает 0,3 – 0,5 г холестерина, а синтезируется – до 1 г.

Воска

Воска – это сложные эфиры, образованные длинноцепочечными жирными кислотами (число атомов углерода 14 – 36) и длинноцепочечными одноатомными спиртами (число атомов углерода 16 – 22). В качестве примера рассмотрим формулу воска, образованного олеиновым спиртом и олеиновой кислотой:

Читайте также:  Полициклический спирт холестерин

Воска выполняют главным образом защитную функцию, находясь на поверхности листьев, стеблей, плодов, семян они защищают ткани от высыхания и проникновения микробов. Они покрывают шерсть и перья животных и птиц, предохраняя их от намокания. Пчелиный воск служит строительным материалом для пчел при создании сот. У планктона воск служит основной формой запасания энергии.

Терпены

В основе терпеновых соединений лежат изопреновые остатки:

К терпенам относятся эфирные масла, смоляные кислоты, каучук, каротины, витамин А, сквален. В качестве примера приведем формулу сквалена:

Сквален является основным компонентом секрета сальных желез.

Источник: ebooks.grsu.by

Липиды классификация и основные функции в клетке организме (Таблица)

Липиды — это ряд структурно и функционально различных органических соединений, отличающихся своей гидрофобностью или наличием в составе своих молекул больших гидрофобных фрагментов.

Настоящие липиды — это эфиры жирных кислот и спиртов, образующиеся в результате реакции конденсации. Нерастворимость в воде определяет многие свойства липидов.

Основную часть веса триглицерида благодаря длинным углеводородным цепям составляет жирная кислота (в молекуле арахидоновой кислоты — 19 С).

Классификация липидов простые и сложные

Простые липиды

это липиды, включающие в свою структуру углерод (С), водород (H) и кислород (O).

алифатические одноосновные карбоновые кислоты с открытой цепью, содержащиеся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения.

высокомолекулярные альдегиды, с числом атомов углерода в молекуле выше 12.

высокомолекулярные спирты, содержащие 1—3 гидроксильные группы.

сложные эфиры высших жирных кислот и высших высокомолекулярных спиртов.

типичными триглицеридами являются жиры и масла, различающиеся по природе своих углеродных цепей — они могут быть насыщенными ([-CH2, CH2-]n) или частично насыщенными (содержат -С=С- связи)

Предельные углеводороды с длинной алифатической цепочкой

Сложные липиды

это липиды, включающие в свою структуру помимо углерода (С), водорода (H) и кислорода (О) другие химические элементы: фосфор (Р), серу (S), азот (N).

сложные эфиры многоатомных спиртов и высших жирных кислот, содержащие остаток фосфорной кислоты и соединённую с ней добавочную группу атомов различной химической природы.

сложные липиды, образующиеся в результате соединения липидов с углеводами.

класс липидов, относящихся к производным алифатических аминоспиртов.

полициклические соединения, к данному классу соединений относится холестерин, важный компонент мембран животных клеток, к ним относятся гормоны.

Фосфогликолипиды, Мышьяколипиды, Ацилглицериды, Диглицериды, Моноглицериды, Церамиды, Эфиры стеринов, N-ацетилэтаноламиды

Основные функции липидов в клетке таблица

Основные функции липидов

У животных жировые выделения сальных желез делают водонепроницаемыми мех и кожу. У птиц аналогичную функцию выполняет копчиковая железа.

Фосфолипиды (фосфатиды) обнаружены во всех клеточных мембранах. Их молекулы имеют полярную «фосфатно-основную» группу, замещающую одну из жирных кислот в триглицериде. Гликолипиды являются важнейшими компонентами мембран хлоропластов

Миелин, секретируемый клетками Шванна, изолирует нейроны, что существенно повышает скорость передачи импульсов.

Важная группа гормонов, включающая кортизон, тестостерон и эстроген, представляет собой стероиды. Они не являются истинными эфирами, но обладают такой же нерастворимостью.

Способность подкожного жира поглощать сотрясения позволяет защитить такие чувствительные органы, как почки, от механического повреждения.

Воска выполняют защитную функцию у растений, входят в состав наружного скелета насекомых, покрывают перья и шерсть.

Жиры очень слабо проводят тепло, поэтому отложения подкожного жира помогают поддерживать температуру эндотермическим животным. У ныряющих млекопитающих важным изолятором является подкожное сало (китовый жир).

Из стероидов образуются желчные кислоты, участвующие в переваривании жиров, и витамин Д, участвующий во всасывании Са 2+

_______________

Источник информации:

1. Биология человека в диаграммах / В.Р. Пикеринг — 2003.

2. Общая биология / Левитин М. Г. — 2005.

Источник: infotables.ru

Липиды в схемах

Липидами называют сложную группу органических соединений с близкими физико-химическими свойствами, которые содержатся в растениях, животных и микроорганизмах. Общие признаки: нерастворимость в воде (гидрофобность), хорошая растворимость в органических растворителях (бензине, диэтиловом эфире, хлороформе), наличие длинноцепочечных углеводородных радикалов — ( R ) и сложноэфирных группировок (- СОО R ).

В природе липиды распространены широко. Вместе с белками и углеводами они составляют основную массу органических веществ всех живых организмов, являясь обязательным компонентом каждой клетки.

Жир служит в организме эффективным источником энергии. В натуральных жирах содержатся жирорастворимые витамины и незаменимые жирные кислоты. Комплексы жиров с белками (липопротеины) являются важными клеточными компонентами, присутствующими как в клеточной мембране, так и в митохондриях.

В растениях липиды накапливаются в семенах и плодах. У животных и рыб они концентрируются в подкожных жировых тканях, в брюшной полости и тканях, окружающих многие важные органы (сердце, почки), а также в мозговой и нервной тканях. Особенно много липидов в подкожной жировой ткани китов (25 — 30 % от их массы), тюленей и других морских животных.

Читайте также:  Атеросклероз шум в ушах медикаментозное лечение

2.1. Строение и классификация липидов

Липиды подразделяют на две группы:

2.1.1. Простые липиды

Простые липиды — это производные одноосновных высших (14 — 22 атомов углерода) карбоновых кислот (жирных кислот) и одно- и многоатомных спиртов (в первую очередь, трехатомного спирта — глицерина).

Наиболее важными и распространенными представителями простых липидов являются ацилглицерины. Широко распространены также воски.

Ацилглицерины (глицериды) — сложные эфиры глицерина и высших карбоновых кислот. Они составляют основную массу липидов (иногда 95 — 96 %), и именно их называют маслами и жирами.

В состав жиров входят в основном триацилглицерины (триглицериды), но присутствуют и ди- и моноацилглицерины:

где R , R ‘, К” — углеводородные радикалы.

Три-, ди- и моноацилглицерины являются ацилированными производными трехатомного спирта глицерина.

Свойства конкретных масел определяются составом жирных кислот, участвующих в построении их молекул. В жирах и маслах обнаружено до 300 карбоновых кислот различного строения. Наиболее распространенные (5 — 6) содержат от 12 до 18 атомов углерода и представляют собой неразветвленные углеродные цепи с четным числом углеродных атомов, некоторые из них содержат связи -С=С- (ненасыщенные жирные кислоты) (табл. 2).

Основные карбоновые кислоты, входящие в состав жиров

Стеариновая и пальмитиновая кислоты входят в состав практически всех природных масел и жиров.

В состав большинства наиболее распространенных масел входят ненасыщенные кислоты, содержащие 1 — 3 двойные связи (олеиновая, линолевая, линоленовая). Арахидоновая кислотаприсутствует в жире животных. Ненасыщенные кислоты природных масел и жиров, как правило, имеют цис — конфигурацию, т. е. заместители расположены по одну сторону плоскости двойной связи:

Природные жиры содержат главным образом триацилглицерины, в состав которых входят остатки различных кислот (и насыщенных, и ненасыщенных). В природных растительных триацилглицеринах положения 1 и 3 заняты предпочтительно остатками ненасыщенных кислот, положение 2 — насыщенной кислотой. В животных жирах картина бывает обратная.

Ацилглицерины — жидкости или твердые вещества с низкими температурами плавления (до 40 °С) и довольно высокими температурами кипения, с повышенной вязкостью (маслообразные), без цвета и запаха, легче воды, нелетучи. Относительно высокие температуры кипения жиров позволяют жарить в них пищу, так как они не испаряются со сковороды, а низкие температуры плавления создают приятное ощущение во рту. Растворимы жиры и масла в органических растворителях и нерастворимы в воде.

Были выявлены следующие зависимости физических свойств ацилглицеридов от их строения.

1. Чем больше молярная масса ацилглицеридов, тем выше их температура плавления. Температура плавления является важной характеристикой жиров, так как известно, что легкоплавкие жиры легче усваиваются в организме человека. У природных жиров нет четких температур плавления, поскольку это смеси различных соединений. Так, например, температура плавления свиного сала составляет 36 — 46 °С, сливочного масла – 19 — 24,5 °С, подсолнечного масла — минус 21 °С.

2. Если в состав ацилглицеридов входят ненасыщенные жирные кислоты, то их агрегатное состояние — жидкое. К ним относятся подавляющее большинство липидов растительного происхождения, называемых маслами. Исключение составляет кокосовое масло, имеющее при обычной температуре твердую консистенцию.

3. Если в состав ацилглицеридов входят насыщенные жирные кислоты, то их агрегатное состояние — твердое. Такие вещества, как правило, имеют животное происхождение и называются жирами.Исключение составляет рыбий жир.

Восками называют сложные эфиры высших одноосновных карбоновых кислот (18 — 30 атомов С) и одноосновных высокомолекулярных (18 — 30 атомов С) спиртов.

Формулу восков в общем виде можно представить следующим образом:

Воски широко распространены в природе, они покрывают, например, тонким слоем листья, стебли, плоды растений, предохраняя их от смачивания водой, высыхания, действия микроорганизмов. Содержание восков в зерне и плодах невелико: в оболочках семян подсолнечника — 0,2 % от массы оболочки, в семенах сои — 0,01 %, в семенах риса — 0, 05 %.

Биологическая библиотека — материалы для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2018-2020 Все права на дизайн сайта принадлежат С.Є.А.

Источник: lifelib.info