Белок переносчик эфиров холестерина

Белок, переносящий эфиры холестерина

Белок, переносящий эфиры холестерина (СЕТР), играет ключевую роль в метаболизме ЛП, способствуя обмену ТГ и эфиров холестерина (ЭХС) между частицами ЛП. Фермент осуществляет перенос ЭХС с ЛПВП на аполипопротеин В (ароВ)-содержащие ЛП, с последующим их захватом гепатоцитами и, таким образом, участвует в обратном транспорте ХС. При повышенном уровне ТГ и усиленном переносе ЭХС/ТГ СЕТР может индуцировать образование более мелких плотных частиц ЛПНП, отличающихся атерогенными свойствами, и снижение уровня ХС ЛПВП. Мутации гена CETP влияют на активность CETP и метаболизм ХС ЛПВП, имеют отношение к долгосрочному прогнозу и эффективности терапии статинами при ИБС. Профиль ЛП при СД характеризуется увеличением уровня ремнантных частиц ЛП, обогащенных ТГ, мелких плотных частиц ЛПНП и снижением уровня ХС ЛПВП. Эти условия способствуют усилению переноса ЭХС с ЛПВП. Тем не менее, сообщения об изменениях уровня СЕТР и его активности при СД противоречивы, что может быть связано с различиями в исходном уровне ТГ в исследованных популяциях.

F.V. Venrooij и соавторы изучали влияние двух распространенных типов полиморфизма гена СЕТР — TaqIВ и А-629С — на эффективность лечения аторвастатином у лиц с СД 2-го типа в рамках двойного слепого рандомизированного плацебо-контролируемого многоцентрового исследования DALI. В него вошли 217 мужчин и женщин, не состоявших в родстве, в возрасте 45-75 лет с CД 2-го типа, из них 84 % имели европейское происхождение. Аторвастатин применяли в дозах 10 и 80 мг в день. Частота аллелей (А-629С) гена СЕТР составила: 0,571 — для аллеля А (В1), 0,501 — для аллеля С (В2). Частота выявления генотипов в группах соответствовала распределению Харди-Вайнберга. Оба полиморфизма были в тесном, но неполном равновесном сцеплении — большинство носителей генотипа В1В1 имели также генотип СС. Как у мужчин, так и у женщин при генотипе В1В1 наблюдали более атерогенный липидный профиль — достоверно более низкий уровень ХС ЛПВП (соответственно (0,99±0,20) и (1,11±0,20) мМ/л, Р

В исследовании REGRESS изучали возможность правастатина замедлять прогрессирование атеросклероза у мужчин с симптоматической ИБС и ГХС. Пациенты в зависимости от генотипа СЕТР были разделены на три группы: В1В1, В2В2, В1В2. Частота выявления генотипа В2В2 составляла 16 %. Изначально у пациентов с генотипом В1В1 был более высокий уровень СЕТР и более низкий уровень ХС ЛПВП, чем у пациентов с генотипом В2В2. В группе плацебо у пациентов с генотипом В1В1 прогрессирование коронарного атеросклероза было максимальным, В1В2 занимали среднее положение, а у В2В2 отмечено минимальное прогрессирование атеросклероза. После терапии правастатином у пациентов с генотипом В1В1 или В1В2 прогрессирование атеросклероза было выражено в значительно меньше степени по сравнению с группой плацебо, а в группе В2В2 применение правастатина не оказывало ожидаемого эффекта (не установлено изменения среднего диаметра просвета венечной артерии).

D. Bercovich и соавторы исследовали влияние полиморфизма гена СЕТР на терапию флувастатином в дозе 40 мг в течение 20 нед у пациентов с семейной ГХС (n=76) [5]. Среднее снижение уровня ХС ЛПНП составило 21,5 %, ТГ — 8,3 %; повышение ХС ЛПВП — 13,4 %.

Аллель CETP-H13 и аллель MDR1-h4 гена множественной лекарственной устойчивости (MDR1) были связаны с повышением уровня ХС ЛПВП, CETP-H5 — со значительным снижением уровня ТГ и незначительным повышением ХС ЛПВП, в то время как аллель MDR1-h10 характеризовался снижением гиполипидемического ответа ТГ на статины. В мультивариантном регрессивном анализе показан независимый аддитивный эффект CETP-H5 и MDR1-h10 на степень снижения уровня TГ при терапии флувастатином.

S. Blankenberg и соавторы оценивали ассоциацию между полиморфизмом CETP и риском смертности при ИБС на фоне приема статинов. В исследование было включено 1211 пациентов, у 82 из которых был фатальный случай. У пациентов-носителей аллеля -629A отмечено значительное снижение активности CETP и повышение уровня ХС ЛПВП. Установлена существенная ассоциация между этим полиморфизмом и риском смерти. Смертность у гомозигот СС уменьшилась на 10,8 %, у гетерозигот СА — на 4,6 %, у гомозигот АА — на 4,0 % (Р

Источник: vuzlit.ru

Получены модели взаимодействия белка-переносчика эфиров холестерина с липопротеинами высокой и низкой плотности

Актуальные темы — Вести из лабораторий
Автор: Administrator
22.02.2012 22:02

Белок-переносчик эфиров холестерина. (Фото: Gang Ren)

На базе оптимизированной электронной микроскопии с негативным окрашиванием ученые из Национальной лаборатории Лоренса Беркли ( Lawrence Berkeley National Laboratory ) Министерства энергетики США создали молекулярно-динамические модели, объясняющие, каким образом белок-переносчик эфиров холестерина (БПЭХ) опосредует трансформацию «хорошего» холестериналипопротеинов высокой плотности (ЛПВП) – в «плохой» холестеринлипопротеины низкой плотности (ЛПНП). Результаты этого исследования указывают путь к более безопасным и эффективным ингибиторам БПЭХ следующего поколения, способным снижать риск развития сердечно-сосудистых заболеваний.

Исследованием, в котором впервые были получены структурные изображения взаимодействия БПЭХ с ЛПВП и ЛПНП, руководил физик Ганг Рен (Gang Ren), специалист в области электронной микроскопии. Эти изображения и структурный анализ подтверждают гипотезу о том, что трансформация ЛПВП в ЛПНП происходит при участии туннеля, проходящего через центр молекулы белка-переносчика эфиров холестерина.

«Наши изображения показывают, что БПЭХ – небольшая (53 кДа) асимметричная молекула с коническим N-концевым и глобулярным С-концевым доменами, имеющая форму банана», – комментирует результаты исследования Рен. «Мы установили, что N-конец БПЭХ проникает в ЛПВП, а его C-конец взаимодействует с ЛПНП/ЛПОНП, образуя трехкомпонентный комплекс. Структурный анализ приводит нас к гипотезе, предполагающей, что это взаимодействие генерирует молекулярные силы, искажающие структуру концов белка, что создает поры на обоих его концах. Эти поры связаны с центральными полостями БПЭХ и образуют туннель, который служит каналом для перемещения холестерина из ЛПВП».

О результатах своего исследования Рен и его коллеги сообщают в статье, опубликованной в журнале Nature Chemical Biology .

Белок БПЭХ проникает в холестериновое ядро ЛПВП (1). Взаимодействие с ЛПНП/ЛПОНП создает молекулярные силы, вызывающие образование пор на обоих концах БПЭХ (2). Эти поры соединяются с центральными полостями БПЭХ, образуя туннель для движения холестерина к ЛПНП/ЛПОНП (3), что уменьшает размер ЛПВП (4). (Рис. Lawrence Berkeley National Laboratory)

Сердечно-сосудистые заболевания, в первую очередь, атеросклероз, остаются основной причиной смертности во всем мире. Ключевыми факторами их развития являются повышенный уровень холестерина низкой плотности и/или пониженный уровень холестерина высокой плотности в плазме крови. Так как активность БПЭХ может понизить концентрацию ЛПВП, а дефицит этого белка связан с повышением уровней ЛПВП в крови, БПЭХ – очень востребованная фармакологическая мишень препаратов для профилактики и лечения сердечно-сосудистых заболеваний. Однако, несмотря на высокий клинический интерес к ингибиторам БПЭХ, о молекулярных механизмах БПЭХ-опосредованной трансформации липопротеинов и о его взаимодействии и связывании с липопротеинами практически ничего неизвестно.

«Изучать механизмы БПЭХ с помощью традиционных структурных методов визуализации очень трудно, поскольку взаимодействие с БПЭХ может изменить размер, форму и состав липопротеинов, особенно ЛПВП», — объясняет Рен. «Мы добились успеха, потому что использовали оптимизированный нами протокол электронной микроскопии с негативным окрашиванием , который позволил определить структуру и провести эффективный скрининг более 300 образцов, полученных при различных условиях».

Ганг Рен (Gang Ren) (стоит) и Лэй Чжан (Lei Zhang) получили новые данные о том, как холестерин переносится из ЛПВП в ЛПНП. (Фото: Roy Kaltschmidt)

Рен и его коллеги использовали свой оптимизированный протокол электронной микроскопии с негативным окрашиванием для получения изображений взаимодействия БПЭХ со сферическими частицами ЛПВП и ЛПНП. Обработав изображения, ученые получили трехмерные реконструкции БПЭХ и БПЭХ, связанного с ЛПВП. Для оценки молекулярной подвижности и описания вероятных структурных изменений, связанных с перемещением холестерина, было использовано молекулярно-динамическое моделирование . Для определения доменов взаимодействия БПЭХ и подтверждения модели движения холестерина путем ингибирования БПЭХ были использованы анти-БПЭХ антитела . Эта модель предполагает возможность существования и использования новых молекулярных мишеней для ингибиторов БПЭХ следующего, более эффективного, поколения.

«Наша модель определяет новые профили взаимодействия БПЭХ с ЛПВП и ЛПНП, и показывает механизм перемещения холестерина», — поясняет Рен. «Это важный шаг к рациональному проектированию нового поколения ингибиторов БПЭХ для лечения сердечно-сосудистых заболеваний».

© «Получены модели взаимодействия белка-переносчика эфиров холестерина с липопротеинами высокой и низкой плотности». Полная или частичная перепечатка материала разрешается при обязательной незакрытой от индексации, незапрещенной для следования робота активной гиперссылке на страницу Вести из лабораторий .

Источник: www.lifesciencestoday.ru

Белок переносчик эфиров холестерина

Основным белком, участвующим в метаболизме липидов и обеспечивающим обратный транспорт ХС, является белок ‒ переносчик ЭХ – СЕТР. Функциональная активность CETP заключается в переносе ЭХ от ХС ЛВП к атерогенным ЛП (ХС ЛПП, ХС ЛОНП, ХС ЛНП), что ведет к снижению уровня ХС ЛВП [9]. В то же время происходит обратный перенос ТГ в направлении от ХС ЛНП, ХС ЛОНП к ХС ЛВП [2].

CETP как участник липидного обмена, обладает двойственной функцией и может проявлять как анти-, так и проатерогенные свойства [11]. Во-первых, проатерогенные свойства CETP выражаются в снижении переноса ЭХ от ХС ЛВП к печеночному рецептору B1 (SR-B1) по прямому пути обратного транспорта холестерина и в увеличении тока ЭХ через атерогенные ХС ЛОНП, ХС ЛПП и ХС ЛНП. Таким образом, эти частицы переносят большее количество ЭХ, что потенциально приводит к увеличению содержания ХС в периферических тканях и артериальной стенке. Во-вторых, при постпрандиальной гипертриглицеридемии активируется перенос ТГ от ХС ЛОНП к ХС ЛВП, что ведет к образованию обогащенных ТГ ХС ЛВП с последующей редукцией их размера и интенсивной экскрецией почками [5]. Тем не менее CETP может проявлять антиатерогенные свойства, т.к. содействует передаче ЭХ к печени через непрямой путь RST, осуществляемый преимущественно через активацию печеночного ХС ЛНП-рецептора. Направленность и степень влияния СЕТР на ЛО зависят не только от корригируемых факторов, таких как, например, концентрация свободных жирных кислот, образованных в результате гидролиза пищевых ТГ, но и генетически детерминированных. Ген, кодирующий белок-переносчик ЭХ (CETP), клонированный Drayna D. и Lawn R.M. (1987), локализуется на 16 хромосоме (16q21), включает 16 экзонов и 15 интронов [11]. Крупномасштабные геномные исследования обнаружили более значимую корреляцию между полиморфизмами гена CETP и концентрацией ХС ЛВП, чем среди других локусов [10]. Одним из частых аллельных вариантов гена СЕТР является замена гуанина (G) на аденин (А) в положении 279 интрона 1 – TaqIB (rs708272) полиморфизм [8]. Часто встречающийся аллель G (наличие сайта рестрикции – «В1») связан с более высокой активностью CETP в сравнении с редким А аллелем (отсутствие сайта рестрикции – «В2»). Носительство редкого мутантного А аллеля ведет к снижению активности CETP, что проявляется в повышении уровня ХС ЛВП и потенциально рассматривается как антиатерогенное влияние [5]. Несмотря на ряд положительных результатов, в исследованиях с использованием в качестве конечных точек оценки не только динамики показателей липидного обмена, но и диаметр просвета коронарных артерий [8], влияние генотипа TaqIB на эффективность терапии статинами остается спорным [9].

Цель исследования – изучение влияния полиморфизма гена белка-переносчика ЭХ на эффективность гиполипидемической терапии розувастатином у пациентов с атерогенными ГЛП, страдающих ИБС.

Материалы и методы исследования

Под наблюдением находились 62 мужчины с ГЛП, а также ИБС, относящихся к группе очень высокого риска развития сердечно-сосудистых осложнений по шкале SCORE [1]. Выбор мужчин обусловлен большей заболеваемостью ИБС. Исследование проведено рандомизированным, простым, проспективным методом. Группы пациентов формировались по следующим стратификационным критериям: возраст от 40 до 61 года, I или II функциональный класс стабильной стенокардии, наличие изолированной (IIA) или сочетанной (IIB) гиперлипидемии. Пациенты имели индекс массы тела 26,8 (25,6–27,8). Фармакологическая коррекция проводилась розувастатином в дозе 10 мг/сутки в течение года с контролем параметров липидного обмена (ЛО) в момент включения, через 4, 8, 24 и 48 недель (0, 1, 2, 3, 4 точки исследования соответственно). В качестве критерия эффективности гиполипидемической терапии принималось условие достижения целевых значений ХС ЛНП [3].

Кровь для исследования брали из локтевой вены утром натощак, не ранее чем через 12–14 часов после приема пищи. Содержание ОХС, ТГ в сыворотке крови определяли энзиматическим калориметрическим методом с использованием диагностических наборов фирмы «Олвекс-диагностикум» (Россия, г. Санкт-Петербург), биохимическим анализатором ROKI («Олвекс-диагностикум», Россия, г. Санкт-Петербург). Уровень холестерина липопротеидов высокой плотности (ХС ЛВП) оценивали тем же методом после предварительного осаждения хиломикронов, ХС ЛОНП и ХС ЛНП при добавлении к образцу фосфорновольфрамовой кислоты и Mg. Содержание ХС ЛНП определяли расчетным путем по формулам Фридвальда, уровень ХС, не связанного с ХС ЛВП, и атерогенный индекс (АИ) вычисляли по общепринятым стандартным формулам [3]. Выделение геномной ДНК осуществлялось из венозной крови стандартным двухэтапным методом фенольно-хлороформной экстракции. Генотипирование полиморфизмов CETPTaq1B (+ 279G > A) (rs708272) проведено ПЦР в режиме реального времени с использованием TaqMan зондов для дискриминации аллелей на амплификаторе CFX96 Bio-Rad Laboratories (США) с использованием коммерческих наборов реактивов TaqMan SNP Genotyping Assays фирмы Applied Biosystems (США).

Проверка вида распределения осуществлялась с помощью критерия Колмогорова ‒ Смирнова. Сравнение групп проводилось с использованием методов непараметрической статистики с поправкой Бонферрони на множественные сравнения. Динамика изменений уровня липидов и липопротеидов в ходе фармакологической коррекции оценивалась ранговым дисперсионным анализом по Фридмену. Для сравнения показателей ЛО в ходе лечения с базальным уровнем использовался критерий Вилкоксона. Процент снижения уровня параметров ЛО в каждой точке рассчитывался:

Влияние генотипов на уровень липидов в каждой точке исследования оценивалось критерием Манна – Уитни. При оценке влияния полиморфизма на показатели ЛО тестировались три генетические модели: аддитивная, доминантная, рецессивная. Критический уровень значимости для исследования принимался равным 0,05. Статистическая обработка полученных данных проведена с использованием Statistica v.10 (StatSoft Inc., США).

Результаты исследования и их обсуждение

В таблице представлены данные по базальному уровню и динамике изменений показателей липидного обмена (ЛО) у пациентов с ИБС в ходе гиполипидемической монотерапии розувастатином. Учитывая ненормальность распределений изучаемых показателей, оцененную критерием Колмогорова ‒ Смирнова (P Примечания: а – P-уровень критерия Манна – Уитни при сравнении показателей липидного обмена между генотипами CETP на каждом этапе лечения; b – P-уровень критерия Фридмана для оценки значимости изменений показателей липидного обмена в ходе гиполипидемической терапии для генотипов +279GG/ GA; рc – то же для генотипа +279AA; * – статистически значимые различия в показателях липидного обмена между генотипами CETP на каждом этапе лечения.

Влияние CETP генотипов на процент снижения показателя ХС ЛВП по сравнению с исходным значением к 48 неделе лечения розувастатином в дозе 10 мг в сутки. * – Р

Источник: fundamental-research.ru

Виды холестерина (липопротеины)

Холестерин или холестерол – химическое соединение, жирный (липофильный) спирт природного происхождения. Поскольку холестерин растворим в жирах и нерастворим в воде на которой и основана кровь, перемещается в крови с помощью белков-транспортеров. Токого рода белки называются липопротеинами и, в зависимости от их плотности (чем выше содержание липидов, тем ниже плотность), холестерин и подразделяется на виды.

В 1859 году Марселен Бертло доказал, что холестерин принадлежит к классу спиртов, после чего французы переименовали холестерин в «холестерол».

Виды липопротеинов – виды холестерина

Существует несколько видов аполипопротеинов, различающихся своей молекулярной массой, степенью растворимости комплексного соединения с холестерином (склонностью к выпадению в осадок кристаллов холестерина и к формированию атеросклеротических бляшек) и способность связываться ( сродством ) с холестерином.

Различают следующие виды:

  1. Липопротеины высокой плотности ЛПВП (HDL)
  2. Липопротеины низкой плотности ЛПНП (LDL)
  3. Липопротеины очень низкой плотности ЛПОНП (VLDL)
  4. Липопротеины промежуточной плотности ЛППП (IDL)
  5. Хиломикрон chylomicron (ULDL)

Липопротеины высокой плотности ЛПВП (HDL)

Липопротеины высокой плотности – так называемый «хороший холестерин» (альфа-холестерин), вид липопротеинов крови обладающих антиатерогенными свойствами. Из частиц липопротеинов, ЛПВП имеют самый маленький размер, 8-11 нм в диаметре, и максимальную плотностью, высокий уровень содержания белка относительно липидов. Печень синтезирует эти липопротеины в виде комплексов аполипопротеинов (А1 и А2) и фосфолипидов. Из-за плоской и сферической формы их также называют дисками.

Высокая концентрация ЛПВП значительно снижает риск атеросклероза и вероятность сердечно-сосудистых заболеваний.

В крови такие частицы взаимодействуют с клетками и другими липопротеинами, быстро захватывают холестерин и приобретают сферическую форму.

Холестерин вместе с фосфолипидами локализуется на поверхности липопротеина. Фермент лецитинхолестеринацилтрансфераза (ЛХАТ) этерифицирует холестерин до эфира холестерина, который из-за высокой гидрофобности проникает в ядро частицы, освобождая место на поверхности. ЛПВП переносит холестерин в основном в печень или стероидогенные органы, такие как надпочечники, яичники и семенники как прямым, так и косвенным путем Передаточный белок эфира холестерина (CETP), также называемый белком переноса липидов плазмы , представляет собой белок плазмы, который облегчает перенос холестериновых эфиров и триглицеридов между липопротеинами . Он собирает триглицериды из очень низкой плотности (VLDL) или липопротеинов низкой плотности (LDL) и обменивает их на сложные эфиры холестерина из липопротеинов высокой плотности (HDL) и наоборот. .

Основная функция ЛВП (HDL): Транспорт холестерина от периферийных тканей к печени.

Доставка холестерина ЛПВП в надпочечники, яичники и семенники важна для синтеза стероидных гормонов.

Липопротеины низкой плотности ЛПНП (LDL)

Липопротеины низкой плотности – так называемый «плохой холестерин», наиболее атерогенный вид липопротеинов крови. ЛПНП образуются из ЛПОНП в процессе гидролиза последних под действием сначала липопротеинлипазы, а затем печёночной липазы. При этом относительное содержание триглицеридов в частице заметно падает, а холестерина растёт. Таким образом, ЛПНП являются завершающим этапом обмена эндогенных (синтезированных в печени) липидов в организме. Размеры ЛПНП варьируют от 18 до 26 нм.

Холестерин ЛПНП доставляет жировые молекулы в клетки и может стимулировать прогрессирование атеросклероза если они окисляются в стенках артерий, именно из-за этой связи часто именуется «плохим холестерином». Этот класс липопротеинов является одним из основных переносчиков холестерина в крови. ЛПНП переносят в организме холестерин, а также триглицериды, каротиноиды, витамин Е и некоторые другие липофильные компоненты.

Основная функция ЛНП (LDL): Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям.

Частицы ЛПНП образуются, поскольку ЛПОНП (VLDL) теряет триглицерид через действие липопротеиновой липазы (LPL), и они становятся меньше и плотнее (т.е. меньше молекул жира с той же транспортной оболочкой белка), содержащей более высокую долю холестериновых эфиров.

Липопротеины очень низкой плотности ЛПОНП (VLDL)

Липопротеиды очень низкой плотности – вид липопротеинов плазмы крови. ЛПОНП образуются в печени из триглицеридов, холестерина и аполипопротеинов. В крови они подвергаются частичному гидролизу и превращаются в липопротеины промежуточной и низкой плотности. Частицы ЛПОНП имеют диаметр 30-80 нм.

В отличие от хиломикронов, переносящих экзогенные продукты (поступающие в организм с пищей), ЛПОНП транспортируют эндогенные продукты (в основном триглицериды, синтезированные в печени). ЛПОНП переносят эндогенные триглицериды, фосфолипиды, холестерин и сложные эфиры холестерина. Выполняют функцию переносчика липидов в организме.

Основная функция ЛОНП (VLDL): Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям.

Липопротеины промежуточной плотности ЛППП (IDL)

Липопротеины промежуточной плотности – вид липопротеинов крови. Образуются в результате деградации липопротеинов очень низкой плотности, а также липопротеинов высокой плотности. Их размер, как правило, составляет от 25 до 35 нм в диаметре, и они содержат в основном ряд триацилглицеринов и эфиров холестерина. Очищаются от плазмы в печени с помощью рецептор-опосредованного эндоцитоза или дополнительно деградируют с образованием частиц ЛПНП.

ЛППП (IDL) похож на липопротеин низкой плотности (LDL), транспортирует различные триглицеридные жиры и холестерин и, подобно ЛПНП, в ряде нарушений липидного обмена, также может накапливаться и способствовать росту атеромы Атерома возникает при атеросклерозе , который является одним из трех подтипов артериосклероза.

Основная функция ЛПП (IDL): Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям.

Хотя можно интуитивно предположить, что «промежуточная плотность» относится к плотности между плотностью липопротеинов высокой плотности и низкой плотности, она на самом деле относится к плотности между плотностью липопротеинов низкой плотности и очень низкой плотности.

Хиломикрон chylomicron (ULDL)

Хиломикроны – самые большие из всех видов липопротеинов крови (также известны как ULDL ультранизкая плотность липопротеинов относительно окружающей воды), достигающие размера от 75 нм до 1,2 микрона в диаметре. Образуются в тонком кишечнике в процессе всасывания экзогенных липидов и состоят из триглицеридов (85-92%), фосфолипидов (6-12%), холестерина (1 -3%) и белков (1-2%). Хиломикроны, после синтеза клетками кишечника, секретируются в лимфатические сосуды, а затем попадают в кровь.

Хиломикроны переносят липиды, абсорбированные из кишечника в жировую , сердечную и скелетную мышечную ткань, где их триглицеридные компоненты гидролизуются активностью липопротеиновой липазы, позволяя абсорбированным тканям высвобождать свободные жирные кислоты. Когда большая часть ядра триацилглицерина была гидролизована, остатки хиломикрона формируются и поглощаются печенью, тем самым также перенося липиды в печень.

Основная функция Хиломикрон (ULDL): Транспорт холестерина и жирных кислот, поступающих с пищей, из кишечника в периферические ткани и печень.

Хиломикроны, состоящие на 85 % из триглицеридов, вместе с липопротеинами очень низкой плотности относятся к триглицерид-богатым липопротеинами.

⚠ [ Все материалы носят ознакомительный характер. Отказ от ответственности krok8.com ]

Источник: krok8.com

Добавить комментарий

Adblock
detector