Синтез жиров где происходит

Синтез жиров

Синтезируются жиры из глицерина и жирных кислот.

Глицерин в организме возникает при распаде жира (пищевого и собственного), а также легко образуются из углеводов.

Жирные кислоты синтезируются из ацетилкофермента А. Ацетилкофермент А – универсальный метаболит. Для его синтеза необходимы водород и энергия АТФ. Водород же получается из НАДФ.Н2. В организме синтезируются только насыщенные и мононасыщенные (имеющие одну двойную связь) жирные кислоты. Жирные кислоты, имеющие две и более двойных связей в молекуле, называемые полинасыщенные, в организме не синтезируются и должны поступать с пищей. Для синтеза жира могут быть использованы жирные кислоты – продукты гидролиза пищевого и собственного жиров.

Все участники синтеза жира должны быть в активном виде: глицерин в форме глицерофосфата, а жирные кислоты в форме ацетилкофермента А.Синтез жира осуществляется в цитоплазме клеток (преимущественно жировой ткани, печени, тонкой кишки). Пути синтеза жиров представлены в схеме.

Следует отметить, что глицерин и жирные кислоты могут быть получены из углеводов. Поэтому при избыточном потреблении их на фоне малоподвижного образа жизни развивается ожирение.

Общая характеристика липопротеинов.Липиды в водной среде (а значит, и в крови) нерастворимы, поэтому для транспорта липидов кровью в организме образуются комплексы липидов с белками – липопротеины.

Все типы липопротеинов имеют сходное строение – гидрофобное ядро и гидрофильный слой на поверхности. Гидрофильный слой образован белками, которые называют апопротеинами, и амфифильными молекулами липидов – фосфолипидами и холестеролом. Гидрофильные группы этих молекул обращены к водной фазе, а гидрофобные части – к гидрофобному ядру липопротеина, в котором находятся транспортируемые липиды.

Апопротеинывыполняют несколько функций:

• формируют структуру липопротеинов;

• взаимодействуют с рецепторами на поверхности клеток и таким образом определяют, какими тканями будет захватываться данный тип липопротеинов;

• служат ферментами или активаторами ферментов, действующих на липопротеины.

Липопротеины.В организме синтезируются следующие типы липопротеинов: хиломикроны (ХМ), липопротеины очень низкой плотности (ЛПОНП), липопротеины промежуточной плотности (ЛППП), липопротеины низкой плотности (ЛПНП) и липопротеины высокой плотности (ЛПВП).Каждый из типов ЛП образуется в разных тканях и транспортирует определѐнные липиды. Например, ХМ транспортируют экзогенные (пищевые жиры) из кишечника в ткани, поэтому триацилглицеролы составляют до 85% массы этих частиц.

Свойства липопротеинов.ЛП хорошо растворимы в крови, неопалесцируют, так как имеют небольшойразмер и отрицательный заряд на

поверхности. Некоторые ЛП легко проходят через стенки капилляров кровеносных сосудов и доставляют липиды к клеткам. Большой размер ХМ не позволяет им проникать через стенки капилляров, поэтому из клеток кишечника они сначала попадают в лимфатическую систему и потом через главный грудной проток вливаются в кровь вместе с лимфой. Судьба жирных кислот, глицерола и остаточных хиломикронов. В результате действия ЛП-липазы на жиры ХМ образуются жирные кислоты и глицерол. Основная масса жирных кислот проникает в ткани. В жировой ткани в абсорбтивный период жирные кислоты депонируются в виде триацилглицеролов, в сердечной мышце и работающих скелетных мышцах используются как источник энергии. Другой продукт гидролиза жиров, глицерол, растворим в крови, транспортируется в печень, где в абсорбтивный период может быть использован для синтеза жиров.

Гиперхиломикронемия, гипертриглицеронемия. После приѐма пищи, содержащей жиры, развивается физиологическая гипертриглицеронемия и, соответственно, гиперхиломикронемия, которая может продолжаться до нескольких часов.Скорость удаления ХМ из кровотока зависит от:

• присутствия ЛПВП, поставляющих апопротеины С-II и Е для ХМ;

• активности переноса апоС-II и апоЕ на ХМ.

Генетические дефекты любого из белков, участвующих в метаболизме ХМ, приводят к развитию семейной гиперхиломикронемии – гиперлипопротеинемии типа I.

Содержание жиров в пищевых продуктах. Жиры как запасные вещества находятся в соединительной ткани животных и рыб, в жировой ткани, подкожной клетчатке, печени и костях, а также в семенах растений и иногда в мякоти плодов.

В растениях одного и того же вида состав и свойства жира могут колебаться в зависимости от климатических условий произрастания. Содержание и качество жиров в животном сырье также зависит от породы, возраста, степени упитанности, пола, сезона года и т.д.

Жиры широко используют, при производстве многих пищевых продуктов, они обладают высокой калорийностью и пищевой ценностью, вызывают длительное чувство насыщения. Жиры являются важными вкусовыми и структурными компонентами в процессе приготовления пищевых продуктов, оказывают значительное влияние на внешний вид пищи. При жарке жир играет роль среды, передающей тепло.

Читайте также:  Основные причины высокого холестерина

Данные о содержании жиров в некоторых продуктах

Название продукта Примерное содержа-ние жиров в пищевых продуктах, % на сырую массу Название продукта Примерное содержа-ние жиров в пищевых продуктах, % на сырую массу
Семена: Хлеб ржаной 1,20
Подсолнечника 35-55 Овощи свежие 0,1-0,5
Конопли 31-38 Плоды свежие 0,2-0,4
Мака Говядина 3,8-25,0
Какао-бобы Свинина 6,3-41,3
Орехи арахиса 40-55 Баранина 5,8-33,6
Орехи грецкие (ядра) 58-74 Рыба 0,4-20
Хлебные злаки: Молоко коровье 3,2-4,5
Пшеница 2,3 Масло сливочное 61,5-82,5
Рожь 2,0 Маргарин 82,5
Овес 6,2 Яйца 12,1

В жирах, полученных из растительных и животных тканей, кроме глицеридов, могут находиться свободные жирные кислоты, фосфатиды, стеролы, пигменты, витамины, вкусовые и ароматические вещества, ферменты, белки и др., которые влияют на качество и свойства жиров. На вкус и запах жиров также оказывают влияние вещества, образующиеся в жирах при хранении (альдегиды, кетоны, перекисные и другие соединения).

Жиры в организм человека должны постоянно поступать с пищей. Потребность в жирах зависит от возраста, характера работы, климатических условий и других факторов, но в среднем в сутки взрослому человеку необходимо от 80 до 100 г жиров. В суточном рационе должно быть примерно 70 % животных и 30 % растительных жиров.

Источник: helpiks.org

Синтез жиров где происходит

Если когда-нибудь большие количества углеводов попадают в организм, они либо сразу используются для получения энергии, либо запасаются в виде гликогена, а избыток их быстро превращается в триглицериды и хранится в таком виде в жировой ткани. У человека большая часть триглицеридов образуется в печени, но очень небольшие количества могут образовываться и в самой жировой ткани. Триглицериды, образуемые в печени, транспортируются главным образом в виде липопротеинов очень низкой плотности в жировую ткань, где и хранятся.
Превращение ацетил-КоА в жирные кислоты. Первым этапом синтеза триглицеридов является превращение углеводов в ацетил-КоА.

Это происходит во время обычного расщепления глюкозы гликолитической системой. Вследствие того, что жирные кислоты являются крупными полимерами уксусной кислоты, легко представить, каким образом ацетил-КоА может быть превращен в жирную кислоту. Однако синтез жирных кислот не обеспечивается просто изменением направления реакции окислительного расщепления. Этот синтез осуществляется двуступенчатым процессом, показанным на рисунке, с использованием малонил-КоА и НАДФ-Н в качестве основных посредников процесса полимеризации.

Объединение жирных кислот с а-глицерофосфатом при образовании триглицеридов. Как только синтезируемые цепочки жирных кислот начинают включать от 14 до 18 атомов углерода, они взаимодействуют с глицеролом, образуя триглицериды. Ферменты, катализирующие эту реакцию, высокоспецифичны для жирных кислот с длиной цепочки от 14 атомов углерода и выше, что является фактором, контролирующим структурное соответствие триглицеридов, хранящихся в организме.

Образование глицероловой части молекулы триглицерида обеспечивается а-глицерофосфатом, который является побочным продуктом реакции гликолитического расщепления глюкозы.

Эффективность превращения углеводов в жиры. Во время синтеза триглицеридов только 15% потенциально содержащейся в глюкозе энергии теряется в виде тепла. Остальные 85% преобразуются в энергию запасаемых триглицеридов.
Важность синтеза и хранения жиров. Синтез жиров из углеводов особенно важен в связи с двумя обстоятельствами.

1. Способность различных клеток организма запасать углеводы в виде гликогена выражена слабо. Только несколько сотен граммов гликогена может запасаться в печени, скелетных мышцах и всех других тканях организма, вместе взятых. В то же время могут запасаться килограммы жира, поэтому синтез жиров является способом, с помощью которого энергия, содержащаяся в избыточном количестве поступивших в организм углеводов (и белков), может запасаться, чтобы использоваться позднее. Количество энергии, которую запасает организм человека в виде жиров, приблизительно в 150 раз превышает количество энергии, запасаемой в виде углеводов.

2. Каждый грамм жиров содержит почти в 2,5 раза больше энергии, чем каждый грамм углеводов. Следовательно, при одном и той же массе тела организм может запасать в несколько раз больше энергии в виде жиров, чем в виде углеводов, что особенно важно, если необходима высокая степень подвижности, чтобы выжить.

Снижение синтеза жиров из углеводов при отсутствии инсулина. При отсутствии инсулина, как это бывает при тяжелом сахарном диабете, жиров синтезируется мало, если они вообще синтезируются, по следующим причинам. Во-первых, при отсутствии инсулина глюкоза не может попадать в сколько-нибудь существенных количествах в жировые ткани и клетки печени, что не обеспечивает образования достаточных количеств ацетил-КоА и НАДФ-Н, необходимых для синтеза жиров и получаемых при метаболизме глюкозы. Во-вторых, отсутствие глюкозы в жировых клетках существенно снижает количество наличного глицерофосфата, что также затрудняет образование триглицеридов.

Читайте также:  Эхографические признаки стенозирующего атеросклероза его лечение

Источник: meduniver.com

Синтез жиров: общие сведения, причины и значение

Жиры содержатся как в организмах животных, так и в растениях. Представляют собой сложные эфиры трехатомного спирта (глицерина) и кислот (олеиновой,стеариновой, линолевой, линоленовой и пальмитиновой). Это доказывается их расщеплением на кислоты и глицерин, а также синтезом жиров из описанных соединений.

Образование жиров в человеческом организме

Жиры являются сложными эфирами глицерина. При пищеварительном процессе они эмульгируются солями желчных кислот и входят в контакт с ферментами, при помощи которых гидролизуются. Таким образом, высвободившиеся жирные кислоты всасываются в слизистую пищеварительного тракта, что является окончанием процесса синтеза жиров. После этого жир проходит всю портальную систему организма в качестве микрочастиц, которые связываются с белками в крови. Метаболизм происходит в печени.

Синтез жиров возможен благодаря излишкам углеводов, которые не участвуют в образовании гликогена. Помимо этого, липиды получаются из некоторых аминокислот.

В сравнении с гликогеном, жиры являются компактным хранилищем энергии. При этом оно никак не ограничивается, так как имеет вид нейтральных липидов в жировых клетках. Липогенез происходит за счет синтеза жирных кислот, так как они содержатся почти во всех липидных группах.

Стадии липидного обмена

Жиры и жироподобные соединения проходят в теле человека следующий цикл:

  • поступление в организм с пищей;
  • распад на более простые соединения, процесс переваривания, всасывание;
  • перенос из пищеварительной системы при помощи хилопротеинов;
  • обмен сложного белка, представленного нейтральными жирами, жирными кислотами, холестеридами или фосфолипидами;
  • обмен сложных липидов, сложных эфиров многоатомных спиртов и высших жирных кислот;
  • обмен полициклического липофильного спирта;
  • взаимопереход жирных кислот и кетоновых тел;
  • процесс превращения ацетил-КоА в жирные кислоты;
  • расщепление жиров на составляющие под действием липазы;
  • деградация продуктов распада жирных кислот.

Значение жирных кислот для организма человека

Для нормального синтеза жиров в организме человека важны фосфолипиды. При их недостатке затормаживаются обменные процессы в печени.

Фосфолипиды распадаются на глицерин, жирные кислоты, фосфорную кислоту и азотистые основания. Первые два вещества могут либо превращаться в воду и углекислый газ, либо участвовать в синтезе жиров.

Холин (азотистое основание) важен для образования метионина и креатина. Метионин необходим для нормальной работы печени, снижения уровня холестерина в крови, а также антидепрессивного эффекта. Креатин отвечает за энергетический обмен в мышечных и нервных клетках. Ацетилхолин (продукт холина) нормализует передачу нервного возбуждения.

Именно жиры дают энергию адезинтрифосфат-молекулам, которые отвечают за все биохимические процессы в организме.

Таким образом, синтез жиров в клеточных мембранах важен для протекания многочисленных химических реакций. Без них человеческий организм не сможет нормально функционировать.

Причины нарушений переваривания жиров

Сбои усвоения жиров могут быть вызваны следующими причинами:

  1. Закупорка желчевыводящих протоков, что ведет к проблемам с секрецией. Вызвано подобное состояние может быть наличием камней или опухолей. Уменьшенная выработка желчной секреции ведет к трудностям смешения жиров и, таким образом, невозможности гидролизовать жирные соединения.
  2. Проблемы с выработкой сока в поджелудочной железе. Это также влияет на гидролиз жиров.

Каждая из описанных выше проблем ведет к увеличению количества жира в твердых продуктах жизнедеятельности человека. Возникает так называемый «жирный стул». Это состояние чревато тем, что перестают усваиваться жирорастворимые витамины A, E, D и К, а также крайне важные для организма жирные кислоты. Длительный «жирный стул» ведет к недостаточности этих веществ и развитию соответствующих клинических симптомов.

Также сбой переваривания жиров влечет трудности в усвоении нелипидных веществ, так как жир имеет свойство обволакивать пищу, чем препятствует воздействию на нее ферментов.

Заболевания, вызванные сбоем синтеза жиров

Нарушение липидного обмена может вести за собой следующие состояния:

  1. Ожирение. Возникает как при нарушении пищевых привычек, сопряженных с малоподвижным образом жизни, так и при наличии гормонального дисбаланса.
  2. Абеталипопротеинемия. Редкое наследственное заболевание, при котором в крови отсутствуют определенные липопротеиды. Жиры скапливаются в слизистой. Развивается деформация эритроцитов.
  3. Кахексия. Малое употребление калорий приводит к уменьшению жировой ткани в организме. Такое состояние может возникать при наличии опухолей, при хронических заболеваниях инфекционного характера, плохом питании или сбоях в метаболизме.
  4. Атеросклероз. Хроническое заболевание артерий, вызванное нарушением обмена липидов, сопряженное с отложением холестериновых бляшек на сосудистых стенках. В дальнейшем это чревато появлением склероза (разрастанием соединительной ткани), что ведет к деформации сосудов вплоть до их полной закупорки. Атеросклероз провоцирует ишемическую болезнь сердца.
  5. Артериосклероз Менкеберга. Данное заболевание похоже на атеросклероз. Однако его принципиальное отличие состоит в том, что сосуды деформируются и закупориваются не под влиянием соединительных тканей, а из-за кальциноза — скопления отложения солей. При таком поражении не формируются бляшки. Кроме того, болезнь провоцирует иные осложнения, главным из которых является аневризм.
Читайте также:  Рыба для холестерина

Синтез жиров в клетках растений

Обменные процессы в растительных тканях претерпевают изменения по завершении периода цветения. Когда ослабевает синтез белков, жиры начинают образовываться из углеводов. Этот процесс протекает вплоть до полного созревания семян. Синтез жиров из углеводов и синтез белков из аминокислот важны для периода размножения.

Наибольшим содержанием жиров характеризуются масличные культуры. Это необходимо учитывать тем, что желает скорректировать собственный вес.

Липидный обмен в науке

Сегодня синтез жиров, подходящих для питания, возможен путем этерификации глицерином жирных кислот, которые, в свою очередь, создаются за счет окисления парафинов. Так как и жирные кислоты, и глицерин получают из каменного угля, существует реальный способ проведения полного синтеза пищевых жиров. Эти открытия стали возможны благодаря работам Ф. Велера, А. В. Г. Кольбе, М. Бертло и А. М. Бутлерова. Именно они доказали связь органических и неорганических веществ, а также возможность их взаимопревращения.

Полученные знания успешно применяются в пищевой, фармацевтической и химической промышленности. Однако сегодня целесообразнее получать жиры из естественных источников (растительных и животных), так как синтез не является выгодной экономической процедурой.

Источник: fb.ru

Синтез жиров где происходит

Установите соответствие между процессом и органоидом, в котором этот процесс происходит.

Б) созревание белковых молекул

В) подготовка секрета к выбросу из клетки

Г) синтез липидов

Д) окисление органических веществ

Е) транспорт электронов внутри мембраны

2) комплекс Гольджи

ПРОЦЕСС ОРГАНОИД

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д Е

1) двумембранные органоиды;

2) наружная мембрана гладкая, внутренняя со складками – кристами, на которых расположены дыхательные ферменты;

3) внутри (между кристами) находится матрикс;

4) матрикс содержит: кольцевую молекулу ДНК, рибосомы 70s, все виды РНК, ферменты;

5) образуются путем деления.

1) окисление органических веществ до углекислого газа и воды (цикл Кребса), синтез АТФ (окислительное фосфорилирование) – клеточное дыхание;

2) синтез некоторых собственных белков.

АППАРАТ (КОМПЛЕКС) ГОЛЬДЖИ:

1) одномембранный органоид эукариотической клетки;

2) состоит из уплощенных замкнутых мембранных цистерн с полостями, собранных в стопку, и мельчайших пузырьков;

3) связан с эндоплазматической сетью (органические вещества, синтезируемые в ЭПС, затем поступают в транспортных пузырьках в аппарат Гольджи).

Функции аппарата (комплекса) Гольджи:

1) модификация и упаковка веществ;

2) накапливает органические вещества, синтезированные в клетке;

3) транспорт (вынос) веществ из клетки, образуя секреторные пузырьки;

4) образование первичных лизосом (и пероксисом – в школьном курсе биологии).

(А) синтез АТФ — митохондрия;

(Б) созревание белковых молекул — комплекс Гольджи;

(В) подготовка секрета к выбросу из клетки — комплекс Гольджи;

(Г) синтез липидов — комплекс Гольджи;

(Д) окисление органических веществ — митохондрия;

(Е) транспорт электронов внутри мембраны — митохондрия.

Синтез липидов, это функция гладкой ЭПС, а не комплекс Гольджи. Поясните, пожайлуста

Комплекс Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки — белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности комплекса Гольджи происходят обновление и рост плазматической мембраны.

Источник: bio-ege.sdamgia.ru