Получение липидов из микроорганизмов

Раздел “Промышленная биотехнология”

Технология получения микробных липидов

Под липидами подразумеваются все растворимые в неполярных растворителях клеточные компоненты микроорганизмов. В настоящее время ведутся поиски новых источников получения жиров, в том числе и на технические нужды. Этим источником могут стать микроорганизмы, липиды которых после соответствующей обработки пригодны для использования в различных отраслях промышленности: медицинской, химико-фармакоцевтической, лакокрасочной, шинной и других, что позволит высвободить значительные количества масел животного и растительного происхождения.

Технологический процесс получения микробных липидов, в отличие от получения белковых веществ, обязательно включает стадию выделения липидов из клеточной массы методом экстракции в неполярном растворителе (бензине или эфире). При этом получают одновременно два готовых продукта: микробный жир (биожир) и обезжиренный белковый препарат (биошрот).

Сырьем для этого процесса являются те же среды, что и для производства кормовой биомассы. В процессе культивирования микроорганизмов на различных средах получаются три класса липидов: простые, сложные липиды и их производные.

Простые липиды – нейтральные жиры и воски. Нейтральные жиры (основные запасные компоненты клетки) – эфиры глицерина и жирных кислот, основная масса которых триацилглицериды (есть, впрочем ещё и моно- и диглицериды). Воски – эфиры жирных кислот или моноооксикислот и алифатических спиртов с длинной углеродной цепью. По структуре и свойствам близки к нейтральным липидам. Наибольшее количество нейтральных липидов синтезируют дрожжи и мицелиальные грибы. Простые липиды находят применение как технологические смазки в процессах холодной и тепловой обработки металлов. Продуцентами сложных липидов являются в основном бактерии.

Сложные липиды делятся на две группы: фосфолипиды и гликолипиды. Фосфолипиды (фосфоглицериды и сфинголипиды) входят в состав различных клеточных мембран и принимают участие в переносе электронов. Их молекулы полярны и при рН 7,0 фосфатная группа несет отрицательный заряд. Концентрат фосфолипидов находит применение в качестве антикоррозийной присадки к маслам и как добавка при флотации различных минералов. Гликолипиды в отличие от фосфолипидов не содержат молекулы фосфорной кислоты, но также являются сильнополярными соединениями за счет наличия в молекуле гидрофильных углеводных групп (остатков глюкозы, маннозы, галактозы и др.).

К производным липидов относят жирные кислоты, спирты, углеводороды, витамины Д, Е и К. Жирные кислоты представлены насыщенными и ненасыщенными с одной двойной связью кислотами нормального строения и четным числом углеродных атомов (пальмитиновая, стеариновая, олеиновая). Среди диеновых жирных кислот можно выделить линолевую. Двойные связи в ненасыщенных жирных кислотах микробных липидов часто располагаются так, что делят их на части, число углеродных атомов в которых кратно трем. Очищенные монокарбоновые кислоты с числом углеродных атомов 14-18 находят широкое применение в мыловаренной, шинной, химической, лакокрасочной и других отраслях промышленности.

Спирты, присутствующие в липидах, делятся на три группы: спирты с прямой цепью, спирты с β-ионовым кольцом, включающие витамин А и каротиноиды, а также стерины – компоненты неомыляемой части липидов (например, эргостерин, облучение которого ультрафиолетовым светом позволяет получать витамин Д2).

Микроорганизмы – продуценты липидов

Для промышленного использования важное значение имеет способность усиленно накапливать липиды. Этой способностью обладают немногие микроорганизмы, в первую очередь дрожжи. Процесс образования липидов у большинства дрожжей состоит из двух четко разграниченных стадий:

– первая характеризуется быстрым образованием белка в условиях усиленного снабжения культуры азотом и сопровождается медленным накоплением липидов (в основном глицерофосфатов и нейтральных жиров);

– вторая – прекращением роста дрожжей и усиленным накоплением липидов (в основном нейтральных).

Типичными липидообразователями являются дрожжи Cryptococcus terricolus. Они могут синтезировать большое количество липидов (до 60% от сухой массы) в любых условиях, даже наиболее благоприятных для синтеза белка.

Из других липидообразующих дрожжей промышленный интерес представляют дрожжи С.guilliermondii,утилизирующие алканы. Они синтезируют в основном фосфолипиды. Накапливают большие количества липидов и активно развиваются на углеводных субстратах (на мелассе, гидролизатах торфа и древесины) также дрожжи видов Lipomyces lipoferus и Rhodotorula gracilis. У этих видов дрожжей липогенез сильно зависит от условий культивирования. Эти продуценты накапливают значительные количества (до 70%) триацилглицеридов.

Микроскопические грибы пока не получили большого распространения в получении липидов, хотя жир грибов по своему составу близок к растительному. Выход жиров у Asp.terreus, например, на углеводных средах достигает 51% от абсолютно сухого веса (АСВ). Липидный состав грибов представлен в основном нейтральными жирами и фосфолипидами.

Липиды, синтезируемые бактериями, своеобразны по своему составу, так как включают в основном сложные липиды, тогда как нейтральные жиры составляют незначительную часть биомассы. При этом бактерии производят разнообразные жирные кислоты (содержащие от 10 до 20 атомов углерода), что важно для промышленного получения специфических жирных кислот. Водоросли перспективны для культивирования в качестве липидообразователей, так как не нуждаются в органическом источнике углерода. Химический состав (соотношение белков и жиров) водорослей также сильно варьирует в зависимости от содержания в среде азота. Недостатки – малая скорость роста и накопление токсических соединений в клетках, – ограничивают промышленное применение.

Питательные среды для получения липидов

Итак, основную роль в процессе биосинтеза липидов играют различные штаммы дрожжей. Они используют те же источники сырья, что и для получения кормового белка, причем от ценности углеродного питания зависят выход биомассы, количество и состав синтезируемых липидов. Для обеспечения направленного биосинтеза липидов в питательной среде употребляются легкоассимилируемые источники азота.

На сдвиг биосинтеза в сторону образования липидов или белка влияет соотношение углерода и азота в среде. Так, повышение концентрации азота вызывает снижение липидообразования, а недостаток азота при обеспеченности углеродом ведет к понижению выхода белковых веществ и высокому процентному содержанию жира. Установлено, что оптимальное соотношение N:С тем меньше, чем труднодоступнее для дрожжей источник углерода. Обычно для углеводородного сырья соотношение N:C = 1:30, а для углеводного – 1:40. Накопление липидов возможно только при наличии в среде фосфора. При его недостатке источники углерода используются не полностью, при избытке – накапливаются нелипидные продукты. На фракционный состав липидов изменение содержания фосфора влияния не оказывает.

Читайте также:  Препараты для улучшения липидного обмена

Воздействие остальных элементов среды (микро- и макроэлементов) сказывается на интенсивности роста дрожжей и скорости утилизации источника углерода, что влияет и на количество накопленных липидов, но не на их качество.

Условия культивирования

На фракционный состав синтезируемых липидов оказывают другие условия культивирования: аэрация, рН и температура. От интенсивности аэрации зависит синтез фосфоглицеридов, жирных кислот и триацилглицеридов. При недостаточной аэрации липиды содержат в 4 раза меньше триацилглицеридов, в 2 раза больше фосфоглицеридов и в 8 раз больше жирных кислот, чем при нормальной. При интенсификации аэрации возрастает степень ненасыщенности липидов и увеличивается относительное количество всех групп ненасыщенных кислот. Повышение рН среды ведет к увеличению содержания фосфоглицеридов и жирных кислот при одновременном снижении количества триацилглицеридов. Оптимальные температуры роста и липидообразования для клеток совпадают, причем содержание липидов не зависит от температуры культивирования. Однако, регулируя температуру, можно создавать разные соотношения насыщенных и ненасыщенных жирных кислот в составе фосфолипидных мембран.

Для углеводных субстратов наиболее отработана технология получения липидов на гидролизатах торфа и древесины. Как показали исследования, соотношение гидролизатов торфа и древесины 1:4 обеспечивает наибольший выход биомассы в стадии культивирования (до 10 г/л) при максимальном содержании липидов (до 51% от АСВ) и высоком коэффициенте усвоения субстрата (до 0,54). Из 1 тонны абсолютно сухого торфа после его гидролиза и ферментации можно получить 50-70 кг микробного жира с преимущественным содержанием триацилглицеридов.

Источник: www.biotechnolog.ru

Получение и применение микробных липидов

Сайт СТУДОПЕДИЯ проводит ОПРОС! Прими участие 🙂 – нам важно ваше мнение.

Микроорганизмы можно использовать для получения фосфолипидов, гликолипидов, незаменимых жир­ных кислот и препаратов на их основе, необходимых для использования в медицинской практике, сельском хозяйстве, пище­вой и других отраслях промышленности.

В настоящее время в небольших объемах получают липиды только с помощью дрожжей, причем липиды являются побочным продуктом основного производства (при получении белково-витаминных концентратов на углеводородах нефти). Получение липидов из мицелиальных грибов, а также бактерий, водорослей и простейших пока не вышло за рамки лабораторных исследований

Наиболее отработаны технологические схемы получения липидов с помощью дрожжей на гидролизатах верхового торфа малой степени разложения и углеводородах нефти. Эти схемы различаются тем, что при получении липидов на гидролизатах торфа дрожжевой жир является основным продуктом, а при использовании углеводородов дрожжевой жир – побочный про­дукт, появляющийся в результате очистки дрожжевой биомассы от остаточных углеводородов. В связи с этим и фракционный состав получаемых этими путями липидов весьма различен: доминирующая фракция углеводородных дрожжей – фосфолипиды, основная фракция при получении липидов на гидролиза­тах торфа – триацилглицерины.

Процесс получения липидов на гидролизатах верхового торфа малой степени разложения включает несколько основных операций: получение гидролизата торфа, отдувка фурфурола и нейтрализация гидролизата до рН 5,5 – 6,0, введение в гидролизат минеральных источников питания, выращивание дрожжей – продуцентов липидов, отделение биомассы и экстракция из нее ли­пидов. Следовательно, весь процесс аналогичен процессу полу­чения кормовых дрожжей, за исключением дополнительных опе­раций, связанных с извлечением липидов. Система растворителей, применяемая для этой цели, идентична используемым в масло-жировой промышленности. Оставшаяся после экстракции липидов биомасса – «биошрот» может быть использована в корм­лении сельскохозяйственных животных.

Кроме гидролизатов торфа для культивирования липидообразующих дрожжей и получения липидов по указанной выше схеме могут быть использованы другие гидролизные среды, например, гидролизаты древесины, или смешанные субстраты дре­весины и торфа.

Многочисленными экспериментами показано, что дрожжевые липиды и продукты их переработки могут использоваться в самых различных отраслях народного хозяйства: в текстильной, керамической, кожевенной, металлообрабатывающей (прокат стального листа, протяжка проволоки, лужение жести) промышленностях. Дрожжевые липиды могут быть использованы также при производстве каучука, резины, фармацевтических препаратов, косметики, мыла, олиф, в процессах флотации руд и др.

Микробные липиды, содержащие значительное количество жирных кислот с двумя двойными связями, возможно использовать для приготовления лаков и красок, а также приготовления медицинских препаратов, способствующих предотвращению атеросклероза и тромбоза. Липиды с преобладанием насыщенных жирных кислот можно употреблять на производство технических смазок. В первых случаях таким требованиям отвечают липиды мицелиальных грибов и дрожжей Lipomyces lipoferus, а во втором – липиды Candida humicola, выращенных на гидролизате древесины.

Закономерности липидогенеза весьма существенны при организации промышленного производства микробного жира, так как в конкретных условиях позволяют получать продукт строго определенного состава и свойств. Такой управляемый микробный синтез может удовлетворить требованиям, предъявляемым к липидам различными отраслями народного хозяйства.

| следующая лекция ==>
Влияние условий культивирования на состав липидов | Механизм биосинтеза полисахаридов

Дата добавления: 2014-01-04 ; Просмотров: 2350 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник: studopedia.su

Микробы

Микроорганизмы:

Классификация и морфология микроорганизмов

Классификация – это закономерность, по которой распределяются микроорганизмы по группам, категориям, уровням, рингам и т.

Микроорганизмы

Термин «микроорганизм» применяется к группе растений и животных микроскопического и субмикроскопического размера. Микр.

Популярные статьи

Исследования

Разделы

Вирусы:

Вирусы под микроскопом

Типы бактериофагов

Живая часть вируса

Открытие мелких микроорганизмов

Основы вирусологии:

САНИТАРНАЯ МИКРОБИОЛОГИЯ. Санитарно-микробиологические исследования

Микроорганизмы, и в первую очередь бактерии, распространены в природе гораздо шире, чем другие живые существа. Благода.

Читайте также:  Народные средства по уменьшению холестерина

ОСНОВЫ ВИРУСОЛОГИИ. Общие понятия о вирусах

Вирусология — одна из основных биологических наук. Занимается изучением вирусов. Вирусы — это организмы, не способные .

Санитарно-микробиопогическое исследование молока и молочных продуктов

Отбор продуктов (ГОСТ 9225—84) Объединенную пробу молока объемом 500 см3 составляют из точечных проб, отобранных из.

Авторизация

Технология получения микробных липидов

Под липидами подразумеваются все растворимые в неполярных растворителях клеточные компоненты микроорганизмов. В настоящее время ведутся поиски новых источников получения жиров, в том числе и на технические нужды. Этим источником могут стать микроорганизмы, липиды которых после соответствующей обработки пригодны для использования в различных отраслях промышленности: медицинской, химико-фармакоцевтической, лакокрасочной, шинной и других, что позволит высвободить значительные количества масел животного и растительного происхождения.

Технологический процесс получения микробных липидов, в отличие от получения белковых веществ, обязательно включает стадию выделения липидов из клеточной массы методом экстракции в неполярном растворителе (бензине или эфире). При этом получают одновременно два готовых продукта: микробный жир (биожир) и обезжиренный белковый препарат (биошрот).

Сырьем для этого процесса являются те же среды, что и для производства кормовой биомассы. В процессе культивирования микроорганизмов на различных средах получаются три класса липидов: простые, сложные липиды и их производные.

Простые липиды – нейтральные жиры и воски. Нейтральные жиры (основные запасные компоненты клетки) – эфиры глицерина и жирных кислот, основная масса которых триацилглицериды (есть, впрочем ещё и моно – и диглицериды). Воски – эфиры жирных кислот или моноооксикислот и алифатических спиртов с длинной углеродной цепью. По структуре и свойствам близки к нейтральным липидам. Наибольшее количество нейтральных липидов синтезируют дрожжи и мицелиальные грибы. Простые липиды находят применение как технологические смазки в процессах холодной и тепловой обработки металлов. Продуцентами сложных липидов являются в основном бактерии.

Сложные липиды делятся на две группы: фосфолипиды и гликолипиды. Фосфолипиды (фосфоглицериды и сфинголипиды) входят в состав различных клеточных мембран и принимают участие в переносе электронов. Их молекулы полярны и при рН 7,0 фосфатная группа несет отрицательный заряд. Концентрат фосфолипидов находит применение в качестве антикоррозийной присадки к маслам и как добавка при флотации различных минералов. Гликолипиды в отличие от фосфолипидов не содержат молекулы фосфорной кислоты, но также являются сильнополярными соединениями за счет наличия в молекуле гидрофильных углеводных групп (остатков глюкозы, маннозы, галактозы и др.).

К производным липидов относят жирные кислоты, спирты, углеводороды, витамины Д, Е и К. Жирные кислоты представлены насыщенными и ненасыщенными с одной двойной связью кислотами нормального строения и четным числом углеродных атомов (пальмитиновая, стеариновая, олеиновая). Среди диеновых жирных кислот можно выделить линолевую. Двойные связи в ненасыщенных жирных кислотах микробных липидов часто располагаются так, что делят их на части, число углеродных атомов в которых кратно трем. Очищенные монокарбоновые кислоты с числом углеродных атомов 14-18 находят широкое применение в мыловаренной, шинной, химической, лакокрасочной и других отраслях промышленности.

Спирты, присутствующие в липидах, делятся на три группы: спирты с прямой цепью, спирты с β-ионовым кольцом, включающие витамин А и каротиноиды, а также стерины – компоненты неомыляемой части липидов (например, эргостерин, облучение которого ультрафиолетовым светом позволяет получать витамин Д2).

Источник: mikrobiki.ru

Обоснование целесообразности использования микробиологического способа производства

Целесообразность получения липидов биотехнологическим методом заключается в том, что полученные таким образом, они представляют собой дополнительный сырьевой источник, имеющий техническое назначение, следовательно, позволяет сэкономить сырье растительного и животного происхождения, таким образом, получение липидов (так же как и белков) микробиологическим способом позволяет решить проблему продовольственной безопасности.

Более того, если предположить, что будет найден химический (или иной) способ производства данного продукта, то наверняка окажется более затратным, поскольку только в процессах биотехнологии можно использовать дешевые отходы сельского хозяйства и промышленности. Биотехнологические процессы по сравнению с химическими обычно более экологичны, имеют меньше вредных отходов, близки к протекающим в природе естественным процессам, протекают при относительно невысоких температурах и давлениях. Как правило, технология и аппаратура в биотехнологических производствах более просты и дёшевы.

Среди биотехнологических способов наивысший выход липидов обеспечивает культивирование дрожжей рода Lipomyces lipoferus на гидролизатах торфа, являющихся дешевым и возобновляемым сырьевым ресурсом. [5]

Описание технологических стадий и режимов в производстве продукта

Эскизная схема получения микробных липидов приведена на рисунке 1.

Рисунок 1 – Эскизная схема получения микробных липидов.

Стадия 1. Торф подвергается кислотному гидролизу при воздействии концентрированной серной кислоты и высокой температуры (120°C) Цель гидролиза – перевести углеводы торфа в простые сахара, которые станут доступными для питания дрожжей.

Стадия 2. Охлаждение гидролизата производится водой с температурой 18°C с целью предотвращения гибели засевных дрожжей от высокой температуры.

Стадия 3. Гидролизат торфа подвергается нейтрализации до рН=6 с помощью известкового молока, поскольку данное значение кислотности является оптимальным для жизнедеятельности дрожжей.

Стадия 4. Получение засевных дрожжей.

Под чистой культурой в производстве следует понимать 100%-ную биомассу дрожжей, рекомендуемую производству для культивирования на перерабатываемом в данный период времени сырье.

Засевные дрожжи чистой культуры приготавливаются по особому режиму, начиная от лабораторной пробирки и кончая производственным дрожжерастильным аппаратом – ферментатором.

Процесс выращивания засевных дрожжей разбивается на ряд операций, основными из которых являются:

· выращивание чистой культуры дрожжей в лабораторных условиях,

· выращивание засевных дрожжей в малой и большой дрожжанках,

· выращивание засевных дрожжей в малом дрожжерастильном аппарате.

Выращивание чистой культуры дрожжей в лабораторных условиях осуществляется в несколько стадий в колбах или бутылях различной вместимостью. В качестве питательной среды на всех стадиях установки истой культуры применяют нейтрализованный гидролизат. Питательную среду приготавливают в специальном аппарате, так называемом стерилизаторе-нейтрализаторе, к которому подведены воздух, известковое молоко, водная вытяжка суперфосфата. Аппарат, заполненный нейтрализованным гидролизатом, с целью стерилизации среды нагревают до 80?С и дополнительно нейтрализуется до рН 5,5 – 5,8 при непрерывном воздушном или механическом перемешивании. При этом добавляются питательные соли:, водная вытяжка суперфосфата, сульфат магния, хлористый калий. Питательную среду можно употреблять после отстаивания и охлаждения. Отстаивание обычно продолжается 5 – 8 ч. Для очистки от осадка в стерилизаторе-нейтрализаторе предусмотрены декантационные устройства, а для механической выгрузки осадка из аппарата – боковой и верхние люки.

Читайте также:  Если у молодой девушки высокий холестерин

Первая стадия выращивания засевных дрожжей в производственных условиях осуществляется в малой дрожжанке общей вместимостью 500 л. Вначале в дрожжанку набирают 180 л кипяченой воды, затем подают 40 л подготовенной питательной среды. В этот субстрат засевают выращенные в лаборатории дрожжи в количестве 120 – 140 г в пересчете на прессованные, вместе со средой, на которой они выращивались. Питательная среда в малой дрожжанке должна содержать РВ в пределах 0,4 – 0,5%.

Все содержимое дрожжанки интенсивно продувается воздухом в течение 12 – 14 ч с постепенной за это время добавкой питательной среды с таким расчетом, чтобы к концу периода объем жидкости был 310 л. При выращивании поддерживается рН 4,0 – 5,5 путем подачи аммиачной воды. На первой стадии за один цикл получают 3,5 – 4,5 кг биомассы дрожжей, содержащих 75% влаги.

Вторая стадия осуществляется в больщой дрожжанке общей вместимостью 4,5 – 5 м 3 . Весь процесс второй стадии аналогичен процессу первой стадии: в дрожжанку подается 1300 л кипяченой воды, 200 л питательной среды, все засевные дрожжи вместе с отработанной средой с первой стадии. Процесс протекает в течение 10 – 11 ч.

Третья стадия осуществляется в малом дрожжерастильном аппарате вместимостью 12 – 15 м 3 . Аппарат заполняют кипяченой водой (1500 л), засевными дрожжами вместе с отработанной средой со второй стадии (2500 л) и свежей средой (500 л). Засевных дрожжей должно быть не менее 7,5 – 15% от массы РВ. Процесс протекает в течение 8 – 9 ч. За это время в малом аппарате в соответствии с режимом дозировки питательной среды накапливается 6000 л среды с содержанием в ней до 90 -100 кг биомассы дрожжей. В 1 л среды накапливается 15 – 20 г дрожжей, содержащих 75% влаги.

При накоплении этого количества дрожжей начинается непрерывный отбор по 1 – 1,5 м 3 /ч засевных дрожжей вместе с отработанной средой из малого аппарата в производственный дрожжерастильный аппарат, где выращиваются товарные дрожжи. Одновременно в малый аппарат подается такое же количество свежей питательной среды. Непрерывная работа малого аппарата продолжается 5 – 7 сут. На восьмые сутки следует повторить процесс выращивания чистой культуры засевных дрожжей, начиная с лабораторного размножения отобранных наиболее эффективных производственных дрожжей, полученных от первого оборота. Этим приемом повторной селекции достигается получение высокоурожайной и устойчивой в производственных условиях культуры дрожжей.

Стадия 5. Засев питательной среды. Осуществляется путем помещения засевных дрожжей в количестве 10-15% от массы среды на подготовленную питательную среду. К среде добавляют дополнительно 0,1 г/л КН2РO4, 0,04 г/л МgSO4, 0,04 г/л CaCl2. Содержание азота в среде в гидролизате достаточно.

Стадия 6. Культивирование дрожжей. Производится при температуре 30°C, в течение 5 суток. Динамика накопления биомассы и липидов представлена на рисунке 2.

Рисунок 2 – Динамика накопления биомассы и липидов.

Х – биомассы, L – липиды, t – продолжительность ферментации, сутки.

Содержание липидов в биомассе на 4-5 сутки составляет 50% по сухому веществу. В их состав входит 5-6% фосфолипидов, 4,8-6,5% стеринов, 2,1-10,7% – моно и диглицеридов, 2,3-9,6% – свободных жирных кислот, 70,7-75,1% – триглицеридов, 1,7-2,1% – эфиров стеринов и воска.

Стадия 7 – Промывка и отделение биомассы дрожжей.

Промывка водой требуется для отделения дрожжей от гидролизата. Последующее отделение биомассы от воды и остатков гидролизата осуществляется в 2 стадии. Первая – флотация, которая позволяет сгустить суспензию до концентрации дрожжей 60-120 г/л, вторая сепарирование – при прохождении трех ступеней сепараторов дрожжевая суспензия сгущается до концентрации 400-750 г/л.

Стадия 8. Экстракция липидов из клеточной биомассы осуществляется диэтиловым эфиром. Из 1 т торфа можно получить 40-50 кг липидов.

Стадия 9. Эфир отделяется от липидов путем перегонки смеси. Перегонка осуществляется при 50°C, поскольку такая температура обеспечит полное удаление диэтилового эфира (температура кипения которого составляет 34,6°C). После отгонки эфира получаем готовый продукт. [6]

Стадия 10. Рафинация – это процесс очистки от сопутствующих примесей. К примесям относятся следующие группы веществ: сопутствующие триглицеридам вещества, переходящие из доброкачественного сырья в процессе извлечения; вещества, образующиеся в результате химических реакций при извлечении и хранении жира; собственно примеси – минеральные примеси, частицы мезги или шрота, остатки растворителя или мыла.

Все методы рафинации делятся на: физические – отстаивание, центрифугирование, фильтрация, которые используются для удаления механических частиц и коллоидно-растворенных веществ; химические – сернокислая и щелочная рафинация, гидратация, удаление госсипола, которые применяются для удаления примесей, образующих в маслах истинные или коллоидные растворы с участием удаляемых веществ в химических реакциях; физико-химические – отбеливание, дезодорация, вымораживание, которые используются для удаления примесей, образующих в маслах истинные растворы без химического изменения самих веществ.

Источник: studbooks.net