Липиды в мембране хлоропластов

Липиды в мембране хлоропластов

Общий принцип организации тилакоидных мембран хлоропластов подобен структуре любой другой мембраны клетки: основу мембраны составляет билипидный слой, в который погружены в большей или меньшей степени отдельные белки и белковые комплексы. Вместе с тем существует определенная специфика липидного и белкового состава, а также особое распределение компонентов в мембранной системе хлоропластов. Это позволяет мембранам осуществлять уникальные энергопреобразующие реакции фотосинтеза и регулировать их в соответствии с меняющимися внешними условиями.

Химический анализ внутренних мембран хлоропластов показывает, что они включают липиды, белки и углеводы. Соотношение липидов и белков по весу близко к отношению 1:1. С учетом того, что молекулярная масса липидов меньше молекулярной массы белков, считают, что в среднем на 1 молекулу белка приходится около 500 молекул липидов. Углеводы главным образом входят в состав липидов (галактолипидов).

Липидный состав мембран тилакоидов. В мембранах хлоропластов найдены две группы липидов: циклические и нециклические.

Циклические липиды составляют около 65% липидов мембран хлоропластов. К ним относятся хлорофиллы и каротиноиды — фотосинтетические пигменты хлоропластов, а также хиноны — пластохиноны и филлохиноны (витамин K1). Эти соединения непосредственно участвуют в реакциях фотосинтеза. Кроме того, в мембранах хлоропластов в больших количествах присутствует б-токоферол, который повышает структурированность мембран и их устойчивость к свободнорадикальным процессам.

Нециклические липиды в мембранах хлоропластов представлены галактолипидами (нейтральными липидами), фосфолипидами и сульфолипидами. Они формируют липидный матрикс и участвуют в структурной организации мембран. Особенностью мембран хлоропластов является высокое содержание в них галактолипидов, в отличие от других мембран клетки, где преобладают фосфолипиды. В мембранах тилакоидов хлоропластов галактолипиды составляют до 75% всех липидов мембран. Галактолипиды содержат один или два остатка углевода, в соответствии с чем выделяют моногалактолипиды и дигалактолипиды.

Галактолипиды не формируют истинный бислой, однако их присутствие важно для образования изгибов мембран и формирования тилакоидов. Кроме того, клиновидная форма молекул галактолипидов способствует встраиванию белков в липидный слой мембраны.

Фосфолипиды и сульфолипиды — анионные липиды, несущие отрицательный заряд при физиологических условиях рН. Основным представителем фосфолипидов в мембранах хлоропластов является фосфатидилглицерол (11% от общего содержания в них липидов). В фосфатидилглицерол мембран хлоропластов входит специфичная для хлоропластов жирная кислота — транс-гексадеценовая. Ее присутствие необходимо для сборки светособирающих комплексов хлоропластов. Сульфолипиды, содержащие серу полярные липиды, найдены только у растений. Они составляют около 10% от общего содержания липидов мембран. Липиды этой группы определяют поверхностный заряд мембран, а также влияют на функциональную активность белковых комплексов тилакоидных мембран.

Жирнокислотный состав липидов внутренних мембран хлоропластов также уникален. Он характеризуется высоким процентным содержанием ненасыщенных жирных кислот — линолевой и линоленовой. Обогащенность липидов ненасыщенными жирными кислотами приводит к сдвигу температуры фазового перехода мембран тилакоидов в область более низких температур по сравнению с другими мембранами клетки. Кроме того, большое содержание ненасыщенных жирных кислот определяет высокую текучесть внутренних мембран тилакоидов и способствует латеральной, ротационной и трансмембранной диффузии компонентов мембран, наблюдаемой в ходе световых реакций фотосинтеза. Вместе с тем ненасыщенные жирные кислоты подвержены перекисному окислению, что в условиях образования активных форм кислорода в хлоропластах становится чрезвычайным фактором риска повреждения мембран.

Белковые компоненты тилакоидных мембран. В мембранах хлоропластов насчитывают более 60 различных белков. Большая их часть — интегральные белки мультипептидных комплексов, осуществляющие процессы поглощения и трансформации энергии при фотосинтезе. Другая часть белков располагается на поверхности тилакоидных мембран либо со стороны стромы, либо со стороны люмена. Поверхностные белки входят в периферические домены мультипептидных комплексов. Ряд поверхностных белков являются самостоятельными компонентами мембран.

Пять основных полипептидных комплексов встроены во внутренние мембраны хлоропластов (рис. 3): комплекс фотосистемы I (ФСI), комплекс фотосистемы II (ФСII), светособирающий комплекс II(ССКII), цитохромный комплекс и АТФ-синтаза. Комплексы ФСI, ФCII и ССКII содержат пигменты (хлорофиллы, каротиноиды), большинство которых функционируют как пигменты-антенны, собирающие энергию для пигментов реакционных центров ФСI и ФСII. Комплексы ФСI и ФСII, а также цитохромный комплекс имеют в своем составе редокс-кофакторы и участвуют в фотосинтетическом транспорте электронов. Белки этих комплексов отличаются высоким содержанием гидрофобных аминокислот, что обеспечивает их встраивание в мембрану. АТФ-синтаза осуществляет синтез АТФ.

Рис. 3. Схема организации основных функциональных комплексов в мембране тилакоидов (по Staehelin, van der Staay, 1996, с изменениями):

ФCI — фотосистема I; ФСII — фотосистема II; CCKI — светособирающий комплекс I; CCKII — светособирающий комплекс II (мобильная антенна); CF0 — сопрягающий фактор 0; CF1 — сопрягающий фактор 1.

Кроме крупных полипептидных комплексов в мембранах тилакоидов имеются небольшие белковые компоненты — пластоцианин, ферредоксин и ферредоксин-НАДФ-оксидоредуктаза, расположенные на поверхности мембран. Они входят в электрон-транспортную систему фотосинтеза.

Ультраструктура внутренних мембран хлоропластов. Расположение отдельных белковых комплексов в мембране и их ориентировочные размеры, установленные с использованием техники замораживания, скалывания и травления мембран и электронной микроскопии, представлены на рис. 3.

Отдельные компоненты мембран занимают положение, строго детерминированное их физико-химическими свойствами. Гидрофобные аминокислоты в белках комплексов позволяют им встраиваться в билипидный слой мембран. Гидрофильные участки этих белков, напротив, выталкиваются из гидрофобного слоя мембран и занимают поверхностное положение. В результате гидрофобных, гидрофильных, а также электростатических взаимодействий на поверхности мембран пептиды определенным образом ориентированы относительно друг друга в комплексах и относительно поверхности мембраны. Электростатические взаимодействия между отдельными пептидами направляют и регулируют сборку полипептидных комплексов мембран хлоропластов. С электростатическими и отчасти ковалентными взаимодействиями белков и кофакторов (пигментов, редокс-агентов) связано формирование активных функциональных центров в этих комплексах.

Вода и неорганические ионы. Вода играет структурную роль, участвуя в формировании функционально активной конформации белковых компонентов мембран, стабилизирует мембраны, непосредственно участвует в процессах фотосинтеза. Неорганические ионы (в первую очередь одно- и двухвалентные катионы — К + , Na + , Ca 2+ , Mg 2+ ) определяют общий поверхностный заряд мембран и возможность взаимодействия отдельных мембран друг с другом. Они контролируют образование гран в хлоропласте. Ионы важны также для сборки комплексов белков в мембране и создания определенной функционально активной конформации.

Читайте также:  Атеросклероз сосудов брюшной полости симптомы и лечение

Источник: studbooks.net

Липидный бислой: текучесть

Важнейшее из свойств липидного бислоя — это текучесть .То, что отдельные молекулы липидов способны свободно диффундировать в пределах липидного бислоя, стало впервые известно в начале 197О-х годов. Первоначально это было показано на искусственных липидных бислоях. Для экспериментальных исследований оказались полезными искусственные мембраны двух типов:

1) липосомы , имеющие форму сферических пузырьков, диаметром от 25 до 1 мкм в зависимости от способа их получения, и

2) плоские бислои, называемые черными мембранами , закрывающие отверстие в перегородке между двумя отделениями сосуда, заполненными водой.

Поведение липидных молекул в клеточных мембранах в основном сходно с поведением этих молекул в искусственных бислоях: липидный компонент биологической мембраны представляет собой двумерную жидкость, в которой отдельные молекулы липидов быстро перемещаются, но только в пределах своего монослоя.

Другим фактором помимо температуры, определяющий текучесть мембраны, является холестерол . О том, что определенная текучесть мембраны имеет важное биологическое значение свидетельствует факт, что бактерии, дрожжи и другие пойкилотермные организмы изменяют жирнокислотный состав своих плазматических мембран таким образом, чтобы текучесть мембраны оставалась примерно постоянной.

Текучая структура липидного бислоя дает возможность мембранным белкам быстро диффундировать и взаимодействовать между собой, обеспечивает простой способ распространения мембранных компонентов от мест, где они вошли в состав бислоя после того, как были синтезированы, в другие области клетки. Текучесть позволяет мембранам сливаться друг с другом, причем способность к регуляции их проницаемости не утрачивается.

Общие принципы организации бислоя : Неполярные хвосты направлены внутрь мембраны и высокоупорядочены. Полярные головки расположены в плоскости мембраны и могут образовывать водородные связи. Хвосты фосфолипидов имеют два хвоста (похоже на цилиндр). Присутствие молекул с одним хвостом (лизолецитин), имеющих в пространстве форму, близкую к конусу, разрушает клеточные мембраны. Фосфолипидные молекулы, лишенные одного из хвостов, образуют поры в бислойной мембране, т.е. нарушается барьерная функция мембран.

Ацильные цепи расположены под некоторым углом к полярным головкам.

Микровязкость мембраны у концов липидных хвостов меньше, чем около полярных голов, высокая подвижность липидных молекул обусловливает латеральную (боковую) диффузию – это хаотическое тепловое перемещение молекул липидов и белков в плоскости мембраны. Рядом расположенные молекулы липидов скачком меняются местами и вследствие таких последовательных перескоков из одного места в другое молекула перемещается вдоль поверхности мембраны. Среднее квадратичное перемещение за секунду фосфолипидной молекулы по поверхности мембраны эритроцита — 5 мкм, что сравнимо с размерами клеток. Таким образом, за секунду молекула может обежать всю поверхность небольшой клетки. Частота перескоков- n = 3 ´ 10 7 с -1 . Каждая молекула, таким образом, в среднем претерпевает десятки миллионов перестановок в плоскости мембраны за секунду, то есть характерное время одного перескока i = 10 -7 – 10 -8 с.

Флип-флоп — это диффузия молекул мембранных фосфолипидов поперек мембраны.

Перескоки молекул с одной поверхности бис-лоя на другую совершаются значительно медленнее Т

Сочетание быстрой диффузии молекул вдоль мембраны и очень медленной диффузии поперек мембраны имеет большое значение для функционирования мембран, а именно для матричной функции мембраны. Благодаря затрудненному переходу поперек мембраны поддерживается упорядоченность в молекулярной структуре мембраны, ее анизотропия, асимметрия (относительно плоскости мембраны) расположения липидных и белковых молекул, определенная ориентация белков-ферментов поперек мембраны. Это имеет большое значение, например, для направленного переноса веществ через мембрану.

Фазовые переходы липидов. Липидная мембрана представляет собой динамическую структуру, строение бислоя может меняться в течении жизни или при изменении физических условий. Фазовые переходы мембраны происходят между двумя состояниями: Гель и Жидкий кристалл.

· Все Ацильные цепи полностью имеют транс-конформацию и вытянуты параллельно друг другу.

· Толщина мембраны больше.

· Площадь, приходящаяся на 1 молекулу меньше.

· Мембрана в целом более компактна.

2. Жидкий Кристалл:

· Часто встречаются транс-гош-переходы, кинки.

· Толщина мембраны меньше.

· Площадь, приходящаяся на 1 молекулу больше.

· Упорядоченность и компактность меньше, Энтропия системы больше.

Переход между этими двумя фазами является переходом 1 рода.

В матриксе одной фазы может существовать большое количество микроскопических доменов другой фазы.

Фазовые переходы происходят при определённой температуре, зависящей от состава липидов. от -20 °С (для мембран из ненасыщенных липидов) до + 60 °С (для насыщенных липидов). Также, чем больше ненасыщенность связей, тем меньше плотность упаковки мембраны и больше проницаемость мембраны.

При фазовом переходе может происходить увеличение пассивной проводимости мембраны, связанное с образованием каналов на границе участков мембраны, имеющих разное фазовое состояние. Этот процесс лежит в основе терморецепции и хеморецепции.

Источник: www.sites.google.com

МЕМБРАННЫЕ ЛИПИДЫ

1. МЕМБРАННЫЕ ЛИПИДЫ

Наиболее поражает в мембранных липидах их огромное разнообразие. Причины этого пока не ясны, хотя становится все более очевидно, что, по-видимому, связано это с тем разнообразием функций, которые липиды выполняют в мембранах. Но, конечно, главная функция мембранных липидов состоит в том, что они формируют бислойный матрикс, с которым взаимодействуют белки. Основные классы липидов представлены на рис. 1.8; их краткое описание дано ниже.

Это наиболее распространенные липиды. Одна из гидроксильных групп глицерола связана с полярной группировкой, содержащей фосфат, а две другие — с гидрофобными остатками. Номенклатура гли-церидов основана на системе стереоспецифической нумерации. Если глицерол изобразить в проекции Фишера, так что центральная группа будет расположена слева, то атомы углерода будут нумероваться так, как показано на рис. В этом случае в название глицерофосфолипида вводят приставку sn для обозначения положения заместителя. В литературе встречается несколько систем стереохимических обозначений: sn, D/L и R/S. На рис. представлена стереохимия атома С-2 в этих трех системах. Природные фосфолипиды.

У большинства фосфоглицеридов фосфатная группа находится в ял-3-положении глицерола; она обычно связана с какой-либо из групп, представленных на рис.

Читайте также:  Полипоз желчного пузыря симптомы

Длинные углеводородные цепи, находящиеся в положениях sn- и sn-2, могут присоединяться за счет сложноэфирной и простой эфирной связей. Эти цепи значительно различаются по длине, раз-ветвленности и степени ненасыщенности.

1. 1,2-диацилфосфоглицериды или фосфолипиды. Эти липиды, являющиеся сложными эфирами жирных кислот и глицерола, широко представлены во многих мембранах эукариотических и прокарио-тических клеток, за исключением архебактерий. Фосфатидил-холин является основным компонентом мембран животных клеток, а фосфатидилэтаноламин — это нередко основной липид бактериальных мембран. В табл. представлен ряд жирных кислот, наиболее часто встречающихся в составе фосфолипидов, а в табл. приведен жирнокислотный состав клеточных мембран печени крысы.


Жирные кислоты почти всегда содержат четное число атомов углерода в пределах от 14 до 24. Наиболее распространены кислоты С16, С18 и С20. Степень ненасыщенности может быть разной, но чаще всего встречаются ненасыщенные кислоты 18:1, 18:2, 18:3 и 20:4. Здесь первое число обозначает длину ацильной цепи, а второе указывает на число содержащихся в ней двойных связей. Почти все природные кислоты характеризуются г/ис-конфигурацией двойных связей. Цепь в такой конфигурации имеет излом, что нарушает упаковку липидных молекул в бислое. В составе молекул многих фосфолипидов имеется одна насыщенная и одна ненасыщенная цепи. В случае животных клеток ненасыщенные цепи обычно находятся в 5и-2-положении глицерола. Такое же распределение цепей характерно и для фосфолипидов клеток Е. coli. Двойные связи в полиненасыщенных цепях обычно являются несопряженными. В фосфолипидах некоторых бактериальных мембран обнаружены разветвленные цепи, а также цепи, содержащие циклы, и гидроксильные группы в /3-положении. На рис. 1.11 показана структура некоторых из этих кислот.

2. У архебактерий глицерофосфолипиды имеют обращенную сте-реохимическую конфигурацию, при которой фосфорильные группы находятся в sn—положении глицерола. У многих бактерий этого вида гидрофобные компоненты представляют собой не сложные эфиры жирных кислот, а простые изопранильные эфиры глицерола.

Кардиолипины или дифосфатидилглицеролы. По сути это димерные формы фосфолипидов. Они содержатся в боль шом количестве во внутренней мембране митохондрий, в мембране хлоропластов и в некоторых бактериальных мембранах, но редко встречаются в других мембранах.

4. Плазмалогены. Это фосфоглицеролипиды, у которых одна из углеводородных цепей представляет собой простой виниловый эфир. Этаноламиновые плазмалогены широко представлены в миелине и в саркоплазматическом ретикулуме сердца.

Эти липиды имеют такие же полярные головки, как и глицерофосфолипиды, но их гидрофобная часть представлена церамидом. В плазматических мембранах животных клеток широко распространен сфингомиелин. Основными жирнокислотными компонентами в миелине являются кислоты 24:1 и 24:0. В мембранах растительных и бактериальных клеток фосфосфинголипиды встречаются редко. Кроме сфингомиелина известны и другие фосфосфинголипиды, например церамид-1-фосфорилэтаноламин, церамид-1-фосфорилинози-тол и церамид-1-фосфорилглицерол.

Это полярные липиды, у которых в м-З-положении глицерола находится углевод, присоединенный с помощью гликозидной связи, например галактоза. Гликоглицеролипиды широко представлены в мембранах хлоропластов, они обнаружены также в заметных количествах в сине-зеленых водорослях и бактериях. Моногалактозилдиа-цилглицерол был назван «наиболее распространенным в природе полярным липидом», поскольку на его долю приходится половина всех липидов тилакоидной мембраны хлоропластов. Для мембран грамположительных бактерий характерны гликоглице-

ролипиды с большим разнообразием Сахаров. Архебактерии также содержат такие липиды, но, как и в случае глицерофосфолипидов, их стереохимическая конфигурация является обращенной, с локализацией гликозидной связи в sn-l-положении глицерола. В мембранах животных клеток гликоглицеролипиды встречаются редко.

классифицируют в соответствии с размером углеводной части, которая может быть представлена всего лишь одним моносахаридным остатком, с одной стороны, и очень сложным углеводным полимером — с другой. Моногликозилцерамиды обычно называют цереброзидами. Ганглиозиды представляют собой класс анионных гликосфинголипидов, которые содержат один или несколько остатков сиаловой кислоты, связанных с сахарными остатками церамидолигосахарида. Глобозидами называют нейтральные гликосфинголипиды, которые не содержат остатков отрицательно заряженной сиаловой кислоты.

Гликосфинголипиды находятся на наружной поверхности плазматических мембран животных клеток; обычно они являются минорными компонентами, но иногда содержатся в значительных количествах. Моногалактозилцерамид — это один из основных компонентов миелиновой оболочки нервного волокна. В некоторых случаях гликосфинголипиды локализуются не в плазматической мембране, а во внутриклеточных мембранах.

Гликосфинголипиды мембран эритроцитов несут антигены группы крови. В клетках аденокарциномы человека накапливаются необычные фукозилированные гликосфинголипиды, которые можно использовать для обнаружения этих клеток и контроля за развитием опухоли.

Эти липиды присутствуют во многих мембранах растений, животных и микробов. По-видимому, самым распространенным из сте-ролов является холестерол. Его молекула состоит из компактного, жесткого гидрофобного ядра, а полярной головкой является гидро-ксильная группа. Холестерол содержится в плазматических мембранах животных клеток, в лизосомах, эндосомах и в мембранах аппарата Гольджи. Он составляет около 30% всей массы мембранных липидов во многих плазматических мембранах животных клеток. В высших растениях обнаружены другие стеролы, чаще всего ситостерол и стигмастерол. Растительные стеролы часто имеют еще одну боковую цепь в положении С-24 и/или двойную связь в положении С-22. В мембранах дрожжей и дру-

гих эукариотических микроорганизмов часто содержится эргостерол. К классу стеролоподобных липидов относят также гопанои-ды, которые найдены в бактериях и некоторых растениях.

В мембранах присутствуют также и другие липиды, которые можно отнести к разряду минорных компонентов вследствие их малого содержания в мембранах. Так, в мембранах обычно обнаруживаются, хотя и в очень малых количествах, свободные жирные кислоты и лизофосфолипиды. Пожалуй, исключением из этого правила являются мембраны хромаффинных гранул, которые, как известно, содержат необычно много свободных жирных кислот. Минорными компонентами мембран являются также моноацил- и диацилглице-ролы. Диацилглицеролы выполняют важную функцию вторых посредников в передаче сигнала при активации клеток рядом биологически активных веществ. Эта система клеточного отклика на внешний стимул будет детально рассмотрена в гл. 9. В мембранах обычно присутствуют и полиизопреноидные липиды. К ним относятся уби-хиноны и менахиноны — компоненты цепи электронного транспорта в мембранах. Можно отметить также ундекапренол и долихол, которые являются липидными переносчиками промежуточных продуктов соответственно при биосинтезе клеточной стенки у прокариот и при биосинтезе гликопротеинов в аппарате Гольджи эукариот. Длина молекул этих липидов в вытянутом состоянии значительно превышает толщину бислоя, поэтому неизвестно, как эти молекулы в нем расположены. Неясно также, почему липидными переносчиками служат именно полиизопреноидные структуры.

Читайте также:  Таблетки при повышенном холестерине

Источник: www.kazedu.kz

Липиды в мембране хлоропластов

Фотосинтез растений осуществляется в хлоропластах: обособленных двухмембранных зеленых органеллах клетки. Кроме того, в растительной клетке имеются еще два вида пластид: лейкопласты – бесцветные, хромопласты – оранжевые. В лейкопластах синтезируется и отлагается в запас крахмал, в хромопластах накапливаются каратиноиды. Строение хлоропласта: Строение хлоропласта: 1 — внешняя мембрана; 2 — внутренняя мембрана; 3 — крахмальное зерно; 4 — ДНК; 5 — тилакоиды стромы (фреты); 6 — тилакоид граны; 7 — матрикс (строма); 8 – внутритилакоидное пространство (люмен).

Внешняя оболочка хлоропластов отграничивает его внутреннее содержимое от цитоплазмы. Это барьер, осуществляющий контроль обмена веществ между хлоропластом и цитоплазмой. Оболочка состоит из 2-х мембран: Наружная мембрана – проницаемая для большинства органических· и неорганических молекул. Она содержит специальные транслокаторы белков, через которые поступают пептиды из цитоплазмы в хлоропласт. Внутренняя мембрана – избирательно проницаема и осуществляет· контроль над транспортом белков, липидов, органических кислот и углеводов между хлоропластом и цитоплазмой. Участвует в формировании внутренней мембранной системы хлоропластов. Строма – гидрофильный, слабоструктурированный матрикс хлоропластов, содержащий водорастворимые органические соединения, а также неорганические ионы. В строме осуществляются реакции фотосинтетической ассимиляции углерода. В строме находятся: кольцевая ДНК, рибосомы, ферменты матричного синтеза. Внутренняя мембранная система хлоропластов – здесь протекают световые реакции фотосинтеза. Мембраны образуют тилакоиды, которые либо тесно соприкасаются друг с другом и уложены в стопки, или граны (тилакоиды гран – 6), либо пронизывают строму, соединяя граны между собой (тилакоиды стромы (фреты)). Собственно образующие их мембраны называют мембранами (ламеллами) гран и мембранами (ламеллами) стромы. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом.

Значение сложной организации внутренних мембран хлоропластов: Благодаря значительному мембранному пространству достигается· увеличение числа функциональных единиц, способных осуществлять световые реакции фотосинтеза. Единство внутренней системы хлоропластов позволяет отдельным· компонентам мембраны мигрировать латерально и вступать между собой в структурный и функциональный контакт. Это необходимо для переноса энергии квантов света в реакционные центры, а также для транспорта электронов по электрон-транспортной цепи в ходе световых реакций фотосинтеза. Разделение мембраной всего внутреннего пространства хлоропластов на· два компонента – стромальное и люмен – позволяет создавать электрохимические градиенты ионов между ними. Создание электрохимического градиента Н+ на внутренних мембранах хлоропластов – важный этап в трансформации энергии квантов света в энергию макроэргических связей АТФ. Образование гранальной структуры внутри хлоропластов значительно· повышает общую эффективность фотосинтеза и создает дополнительные возможности для регуляции световых реакций. Сегрегация (разделение) в стромальных или гранальных тилакоидах компонентов мембран с различными функциями позволяет добиться определенной независимости их функционирования. Это итог длительного эволюционного процесса – впервые появилась у зеленых водорослей.

Основные этапы образования хлоропластов. Предшественники хлоропластов – пропластиды. Пропластиды образуются из инициальных частиц (зачатков), содержащихся в меристиматических клетках. Формирование хлоропласта может осуществляться двумя путями: I путь – непосредственное преобразование пропластид в хлоропласты. Реализуется при росте растений в условиях нормального соотношения дня и ночи. Пропластиды

меристиматических клеток листа превращаются в хлоропласты параллельно с ростом и дифференцировкой клеток листа. Биогенез хлоропластов сопровождается формированием тилакоидных мембран хлоропластов при участии внутренней мембраны оболочки пропластиды. II путь – образование хлоропластов из этиопластов. Этиопласты – органеллы клеток растения, растущего в отсутствие света. Они образуются из пропластид и имеют некоторвые особенности внутреннего строения: содержат проламеллярное тело, сформированное в результате скопления ограниченных мембраной пузырьков и разветвленных трубчатых структур. Мембраны проламеллярного тела содержат небольшие количества каротиноидов и предшественника хлорофилла – протохлорифиллида. Формирование тилакоидных мембран хлоропластов в этиопластах происходит при участии мембран проламелярного тела в ответ на освещение. Выделяют три этапа фотоморфогенеза хлоропластов из этиопластов: 1 этап: Из трубчатых элементов проламелярных тел образуются крупные пузырьки, располагающиеся по радиусу. Этот процесс сопровождается образованием хлорофилла из имеющегося в этиопластах протохлорофиллида. 2 этап: Происходит накопление белков, липидов, пигментов и самосборка мембран тилакоидов. 3 этап: Происходит дифференциация гран. Эта стадия совпадает с интенсивным синтезом хлорофилла. Для формирования гран необходим высокий уровень содержание хлорофиллов в хлоропластах. Таким образом, формирование хлоропласта происходит только на свету. Непосредственно из пропластид могут образовываться и бесцветные пластиды (лейкопласты-амилопласты). Лейкопласты чаще всего локализованы в клетках запасающих тканей. Подобно пропластидам они характеризуются слабо развитой ламеллярной структурой. Во многих случаях в лейкопластах ламеллы сохраняют связь с внутренней оболочкой. В строме лейкопластов располагаются крахмальные зерна, осмиофильные глобулы, белковые включения. Амилопласты могут превращаться в хлоро- пласты, например, как это происходит при позеленении клубней картофеля на свету. Хромопласты — это, по-видимому, результат деградации хлоропластов, при которой ламеллярная структура частично разрушается. Одновременно происходит образование осмиофильных глобул, содержащих каротиноиды. Эти глобулы располагаются сплошным слоем под оболочкой пластид. Регуляция биогенеза хлоропластов. Биогенез хлоропластов повергается контролю и регуляции со стороны внешних и внутренних факторов. Выделяю следующие виды регуляции: Фоторегуляция связана с активацией светом синтеза пигментов и белков, входящих в светособирающие комплексы. Контроль синтеза фотосинтетических пигментов основан на регуляции светом активности осуществляющих его ферментов. Фоторегуляция синтеза белков хлоропластов осуществляется на генетическом уровне. В регуляции биогенеза хлоропластов участвуют сигнальные фоторецепторные системы – фитохромная система и рецепторы синего света. Гормональная регуляция связана с влиянием на синтез пигментов и белков хлоропластов ряда фитогормонов. Генетическая регуляция включает контроль биогенеза хлоропластов на всех уровнях реализации генетической информации, включая транскрипцию, трансляцию, процессинг, транспорт белков, сборку мультипептидных комплексов. Обнаружена регуляция экспрессии ряда генов ядерной ДНК, обслуживающих хлоропласт светом, гормонами, продуктами фотосинтеза

Источник: studopedia.ru