Как определяется объем

Все формулы объемов геометрических тел

1. Расчет объема куба

a — сторона куба

Формула объема куба, (V):

2. Найти по формуле, объем прямоугольного параллелепипеда

a , b , c — стороны параллелепипеда

Еще иногда сторону параллелепипеда, называют ребром.

Формула объема параллелепипеда, (V):

3. Формула для вычисления объема шара, сферы

R радиус шара

По формуле, если дан радиус, можно найти объема шара, (V):

4. Как вычислить объем цилиндра ?

h — высота цилиндра

r — радиус основания

По формуле найти объема цилиндра, есди известны — его радиус основания и высота, (V):

5. Как найти объем конуса ?

R — радиус основания

H — высота конуса

Формула объема конуса, если известны радиус и высота (V):

7. Формула объема усеченного конуса

r — радиус верхнего основания

R — радиус нижнего основания

h — высота конуса

Формула объема усеченного конуса, если известны — радиус нижнего основания, радиус верхнего основания и высота конуса (V ):

8. Объем правильного тетраэдра

Правильный тетраэдр — пирамида у которой все грани, равносторонние треугольники.

а — ребро тетраэдра

Формула, для расчета объема правильного тетраэдра (V):

9. Объем правильной четырехугольной пирамиды

Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула для вычисления объема правильной четырехугольной пирамиды, (V):

10. Объем правильной треугольной пирамиды

Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула объема правильной треугольной пирамиды, если даны — высота и сторона основания (V):

11. Найти объем правильной пирамиды

Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.

h — высота пирамиды

a — сторона основания пирамиды

n — количество сторон многоугольника в основании

Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V):

Источник: www-formula.ru

Формулы объема геометрических фигур

Объем куба

Объем куба равен кубу длины его грани.

Формула объема куба:

Объем призмы

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

Объем параллелепипеда

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

Объем прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

Объем пирамиды

Объем пирамиды равен трети от произведения площади ее основания на высоту.

Формула объема пирамиды:

V = 1 So · h
3

Объем правильного тетраэдра

Формула объема правильного тетраэдра:

Читайте также:  Холестерин и лечение домашними средствами
V = a 3 √ 2
12

Объем цилиндра

Объем цилиндра равен произведению площади его основания на высоту.

Формулы объема цилиндра:

Объем конуса

Объем конуса равен трети от произведению площади его основания на высоту.

Формулы объема конуса:

V = 1 π R 2 h
3
V = 1 So h
3

Объем шара

Объем шара равен четырем третьим от его радиуса в кубе помноженного на число пи.

Формула объема шара:

V = 4 π R 3
3

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник: ru.onlinemschool.com

Как определяется объем

В общем случае математически объём тела вычисляется по следующей интегральной формуле:

,

где — характеристическая функция геометрического образа тела.

Для ряда тел с простой формой более удобным является использование специальных формул. Например, объём куба с длиной стороны, равной a, равен .

Через плотность

Объём находится по формуле:

Единицы объёма жидкости

  • 1 л = 1,76 пинты = 0,23 галлона

Английские внесистемные

  • 1 пинта = 0,57 л
  • 1 Кварта = 2 пинты = 1,23 л
  • 1 галлон = 8 пинтам = 4,55 л (Имперский галлон)

Американские внесистемные

  • 1 американский галлон = 3,785 л (Распространён в США)

Античные внесистемные

  • Котила = 0,275 л

Древнееврейские

  • Эйфа = 24 883 см³ (Эйфа́)
  • Омер = 1 /10 эйфы
  • Гин = 4147 см³ [1]
  • Кав = 1382 см³

Русские внесистемные

  • Бочка = 40 вёдер = 492 л
  • Ведро = 4 четверти = 8 штофов = 12,3 л
  • Кружка = 10 чарок = 20 шкаликов = 1,23 л
  • Бутылка (винная) = 1/16 Ведра = 0,77 л
  • Бутылка (пивная) = 1/20 Ведра = 0,61 л
  • Мера = 4,7 ведра
  • Чарка = 2 шкалика = 0,123 л
  • Четверть = 4 бутылки = 3,075 л
  • Шкалик (косушка) = пол чарки = 0,0615 л
  • Штоф = 1,54 л

Единицы сыпучих веществ

Английские внесистемные

  • 1 бушель = 36,36872 литров = 8 галлонов = 3,63687·10 −2 м³
  • 1 баррель = 0,16365 м³. (для сыпучих веществ)

Русские внесистемные

  • Четверик = 26,238 л
  • Гарнец = 3,2798 л

Молярный объём

Vm — величина, равная отношению объёма V системы (тела) к её количеству вещества n:

Молярный объем для газов при нормальных условиях: Vm = 22,4 л/моль

Прочие единицы измерения

  • 1 дюйм кубический = 1,63871·10 −5 м³
  • 1 литр = 1·10 −3 м³
  • Лямбда 1 λ = 1·10 −9 м³
  • 1 унция = 2,841·10 −5 м³ (анг.)
  • 1 унция = 2,957·10 −5 м³ (амер.)
  • 1 фут кубический = 2,83168·10 −2 м³
  • 1 ярд кубический = 0,76455 м³
  • 1 стер = 1 м³
  • 1 ае кубическая =3,348071936e+40 км³
  • 1 км кубический = 1 000 000 000 м³
  • 1 световой год кубический = 8,46590536e+38 км³
  • 1 пк кубический = 2,9379989989648103256576e+40 км³
  • 1 мпк кубический =1 000 000 000 пк³=2,9379989989648103256576e+49 км³
Читайте также:  Продукты содержащие наибольшее количество холестерина

Примечания

  1. «ТЕГИЛАТ ГАШЕМ» — ISBN 965-310-008-4

Литература

  • Объем // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб. , 1890—1907.

Для улучшения этой статьи желательно ? :

  • Проставив сноски, внести более точные указания на источники.
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.
  • Добавить иллюстрации.

Wikimedia Foundation . 2010 .

Смотреть что такое «Объём» в других словарях:

объём — объём, а … Русский орфографический словарь

объём — объём … Словарь употребления буквы Ё

объём — объём/ … Морфемно-орфографический словарь

объём — сущ., м., употр. сравн. часто Морфология: (нет) чего? объёма, чему? объёму, (вижу) что? объём, чем? объёмом, о чём? об объёме; мн. что? объёмы, (нет) чего? объёмов, чему? объёмам, (вижу) что? объёмы, чем? объёмами, о чём? об объёмах 1. В… … Толковый словарь Дмитриева

объём — а; м. 1. Величина чего л. в длину, высоту и ширину, измеряемая в кубических единицах. О. геометрического тела. О. куба, цилиндра. О. здания. О. полтора кубометра. В объёме (в трёх измерениях; объёмно). 2. Содержание чего л. с точки зрения… … Энциклопедический словарь

объём — объём, объёмы, объёма, объёмов, объёму, объёмам, объём, объёмы, объёмом, объёмами, объёме, объёмах (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов

ОБЪЁМ — ОБЪЁМ, а, муж. 1. Величина чего н. в длину, высоту и ширину, измеряемая в кубических единицах. О. пирамиды. О. здания. 2. Вообще величина, количество. Большой о. работ. О. информации. О. знаний. | прил. объёмный, ая, ое (к 1 знач.). Объёмное… … Толковый словарь Ожегова

объём — ОБЪЁМ1, а, м Величина или вместимость предмета, определяемая произведением длины, высоты и ширины и измеряемая в кубических единицах. Объем бассейна в новой школе составляет 300 кубических метров. ОБЪЁМ2, а, м Количество или величина чего л.… … Толковый словарь русских существительных

ОБЪЁМ — ОБЪЁМ, мера части пространства, занимаемого телом. Единицей измерения служит объём единичного куба … Современная энциклопедия

объ — объ. Пишется вм. (об) перед е, ю, я, напр. объехать, объявить.Примечание. Вм. этой приставки и следующей за ней буквы и пишется обы, напр. обыграть. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

объ… — Пишется вместо об… перед е, ю, я, напр. объехать, объявить. Примечание. вместо этой приставки и следующей за ней буквы и пишется обы, напр. обыграть. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

Читайте также:  Роль атеросклероза в патологии сердечно сосудистой системы

Источник: dic.academic.ru

Формула объема.

Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.

Объем фигуры — это количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Объемы геометрических фигур.

Параллелепипед.

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Цилиндр.

Объем цилиндра равен произведению площади основания на высоту.

Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

Пирамида.

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

Правильная пирамида — это пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.

Правильная треугольная пирамида — это пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

Правильная четырехугольная пирамида — это пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Тетраэдр — это пирамида, у которой все грани — равносторонние треугольники.

Усеченная пирамида.

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

Куб.

Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s 3 .

Конус — это тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.

Усеченный конус получится, если в конусе провести сечение, параллельное основанию.

V = 1/3 πh (R 2 + Rr + r 2 )

Шар.

Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.

Призма.

Объем призмы равен произведению площади основания призмы, на высоту.

Сектор шара.

Объем шарового сектора равен объему пирамиды, основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу шара.

Шаровой слой — это часть шара, заключенная между двумя секущими параллельными плоскостями.

Сегмент шара — это часть шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или сферическим сегментом

Источник: www.calc.ru

Добавить комментарий

Adblock
detector
Фигура Формула Чертеж