Биологическая роль липидов и атф

Биологическая роль липидов и атф

Строение и биологическая роль холестерина в организме

Многие годы безуспешно боретесь с ХОЛЕСТЕРИНОМ?

Глава Института: «Вы будете поражены, насколько просто можно снизить холестерин просто принимая каждый день.

Холестерин— биологически активное вещество липидной природы, которое в норме находится в организме человека. Холестерол необходим для нормального функционирования системы метаболизма и обладает большим влиянием на обменные процессы. Это вещество синтезируется эндогенно собственными гепатоцитами — клетками печени, а также может поступать в организм с продуктами питания. Существует мнение, что холестерин имеет лишь негативное влияние на здоровья человека, что является ошибочным. Холестерол является основой практически всех клеток человеческого организма. Цитологические мембраны состоят из трех слоев, один из которых белковый, а два другие — фосфолипидные.

С помощью холестерина происходит синтез стероидныхгормонов, а также витамина Д3, который играет важнейшую роль в усвоении кальция. Именно это вещество способствует транспорту липотропных веществ, таких как жирорастворимые витамины. Помимо этого, безусловно, холестерин способен оказывать и негативные эффекты, о которых известно практически всем — это развитие атеросклероза, вследствие отложения липидов на стенках сосудов кровеносной системы, а также образование желчных холестериновых камней, если нарушаются реологические функции желчи.

Для снижения холестерина наши читатели успешно используют Aterol. Видя, такую популярность этого средства мы решили предложить его и вашему вниманию.
Подробнее здесь…

Также не стоит забывать о роли холестерина в синтезе серотонина, вещества, которое иначе называют «гормоном счастья». При снижении его продукции может развиваться тяжелая депрессия, поэтому не нужно пытаться избавится от холестерина полностью.

Общая характеристика холестерина

Впервые вещество холестерин, получило свое название в 1769 году, когда ученые выделили его из структуры желчных камней. «Холе» — на латыни означает желчь, а «стерин» — имеющий твердое строение.

Позже, благодаря более современным исследованиям, было доказано, что это вещество по структуре относится к производным спиртов, в связи с чем необходимо сменить название на холестерол.

Холестерин — это нерастворимое в воде соединение, в основе ядра которого находится циклопентанпергидрофенантрен.

Биологическая роль холестерина заключается в участии в практически всех процессах обмена, а именно:

  • холестерол является предшественником в синтезе других стероидных структур, таких как желчные кислоты, мембраны клеток, стероидные гормоны;
  • является основным фактором риска возникновения атеросклеротического поражения сосудов;
  • входит в состав желчных камней при желчекаменной болезни;
  • участвует в синтезе витамина Д3;
  • принимает участие в процессах регуляции проницаемости клеток;
  • имеет свойство защищать эритроциты от воздействия гемолитических ядов.

Становится понятно, что без холестерола, организм человека не сможет функционировать нормально, но и при превышении допустимого уровня этого вещества появляется риск развития многих заболеваний.

Формы существования холестерина

Для поддержания здоровья, необходимо контролировать умеренный уровень холестерина в организме.

Его снижение будет способствовать нарушению структурной функции, а избыток приводит к закупорке сосудистого русла.

Строение холестерола может отличаться. И в зависимости от этого он приобретает разные свойства.

Основные формы холестерина в организме это:

  1. Общий холестерин;
  2. Холестерин в составе липопротеидов очень низкой плотности.
  3. В составе липопротеидов низкой плотности.
  4. В составе липопротеидов средней плотности.
  5. В составе липопротеидов высокой плотности.

Значение каждой из этой форм в ее влияние на состояние жиров в плазме крови. Чем ниже плотность липопротеидов, тем больше они способствуют осаждению жиров на стенке сосудов, что ведет к развитию атеросклероза. Основная характеристика липопротеидов высокой плотности поддерживать липидные структуры во взвешенном виде, а также важная их функция — транспорт липидов от одной клеточной структуры к другой. Такое влияние на организм способствует установлению тонкого равновесие, при нарушении которого развиваются патологические изменения.

Многие люди забывают о том, что сами влияют на содержание холестерина в крови. Например, прием жирной пищи напрямую влияет на холестерол.

Биологическая роль этого продукта в этом случае, состоит в том, что из него синтезируются желчные кислоты, которые помогают всасываться жирам. При приеме жирной пищи холестерола требуется больше, как следствие, больше жиров всасывается, а в печени синтезируется еще больше холестерола.

Биология повышения уровня холестерина простая, и чаще всего связана с:

  • пищей богатой жирами,особенно животного происхождения;
  • недостатком клетчатки в рационе питания;
  • курением;
  • сахарным диабетом, поскольку происходит тотальное нарушение обмена;
  • с наследственной предрасположенностью;
  • наличием ожирения;
  • многочисленными стрессами;
  • нарушением работы печени — застоем желчи, печеночной недостаточностью;
  • малоактивным образом жизни.

Все эти факторы ведут к более серьезным нарушениям, таким как — инфаркт миокарда, инсульт вследствие атеросклероза, декомпенсация сахарного диабета с развитием микро и макроангиопатий, или более тяжелого состояния — кетоацидотической комы.

Как бороться с повышенным холестерином?

Повышение уровня общего холестерина выше нормативных значений для пациентов групп риска, тех, у кого уже были сердечно-сосудистые катастрофы или есть диабет, является проблемой.

Этот показатель для них не должен превышать 4,5, а для здоровых людей 5-6 ммоль на литр.

Это значит, что нет необходимости держать показатели холестерола на нулевых значениях. Но при превышении допустимого уровня, резко возрастает риск развития атеросклероза.

Поэтому для эффективного снижения холестерина нужно руководствоваться простыми правилами:

  1. Вести активный образ жизни — тогда холестерин будет использоваться для метаболических процессов, таких как, например, питание мышц.
  2. Придерживаться диеты с низким содержанием животных жиров. Как вариант заменить жирную свинину на говядину, или птицу. Следует обогатить свое питание продуктами с высоким содержанием клетчатки, например, овощами и фруктами, которые будут способствовать улучшению моторики кишечника, и уменьшат всасывание жиров.
  3. Отказаться от вредных привычек, которые помимо того, что нарушают гемодинамику в сосудистом русле, также способствуют неправильному функционированию желчного пузыря, что ведет к развитию желчекаменной болезни.
  4. Периодически проверять функцию печени и желчного пузыря. Плановая ультразвуковая диагностика раз в год — идеальный выбор в этой ситуации.
  5. Контролировать липидный спектр крови раз в полгода.
  6. Пациентам, у которых уже есть проблемы вследствие развития диабетического атеросклероза, назначают медикаментозную коррекцию уровня холестерина.

Если выполнение всех этих рекомендаций не дает желаемого эффекта, это повод для беспокойства, поскольку атеросклероз очень долго может оставаться бессимптомным, пока однажды не проявится сосудистой недостаточностью: острой -в виде инфаркта или инсульта, и хронической — в виде ишемического поражения конечностей.

Медикаментозные методы понижения холестерина

Холестерин — вещество необходимое для нормальной работы организма человека.

В современном мире, когда малоподвижный образ жизни и нарушение диеты сопровождают практически каждого, нужно помнить о контроле показателя холестерола.

При повышении его сверх нормы, необходимо менять образ жизни, а если и это не оказывает эффекта, проконсультироваться с врачом с целью подбора препаратов, которые будут эффективно снижать уровень холестерина в крови.

К препаратам для снижения уровня холестерина относят такие группы:

  • производные никотиновой кислоты;
  • фибраты;
  • статины;
  • препараты, которые связывают желчные кислоты.
Читайте также:  Какие хорошие таблетки для понижения холестерина

Все эти лекарства, какими бы безобидными они не казались, имеют широкий спектр противопоказаний и побочных эффектов. В связи с этим перед их применением необходимо проконсультироваться со специалистом. Среди них наиболее сильными и современными препаратами считаются статины, которые эффективно способствуют снижению уровня холестерина, а также уменьшают воспаление в атеросклеротических бляшках. Эти лекарства чаще всего назначают в комплексном лечении гипертонической болезни, ишемической болезни сердца, а также, если у пациента уже присутствуют острые осложнения атеросклероза.

О роли холестерина в организме рассказано в видео в этой статье.

Источник: holesterin-ateroskleroz.ru

ЛЕКЦИЯ № 2. Химический состав живых систем. Биологическая роль белков, полисахаридов, липидов и АТФ

Обзор химического строения клетки

Все живые системы содержат в различных соотношениях химические элементы и построенные из них химические соединения, как органические, так и неорганические.

По количественному содержанию в клетке все химические элементы делят на 3 группы: макро-, микро– и ультрамикроэлементы.

Макроэлементы составляют до 99 % массы клетки, из которых до 98 % приходится на 4 элемента: кислород, азот, водород и углерод. В меньших количествах клетки содержат калий, натрий, магний, кальций, серу, фосфор, железо.

Микроэлементы – преимущественно ионы металлов (кобальта, меди, цинка и др.) и галогенов (йода, брома и др.). Они содержатся в количествах от 0,001 % до 0,000001 %.

Ультрамикроэлементы. Их концентрация ниже 0,000001 %. К ним относят золото, ртуть, селен и др.

Химическое соединение – это вещество, в котором атомы одного или нескольких химических элементов соединены друг с другом посредством химических связей. Химические соединения бывают неорганическими и органическими. К неорганическим относят воду и минеральные соли. Органические соединения – это соединения углерода с другими элементами.

Основными органическими соединениями клетки являются белки, жиры, углеводы и нуклеиновые кислоты.

Биополимеры Белки

Это полимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота. Молекула белка может иметь 4 уровня структурной организации (первичная, вторичная, третичная и четвертичная структуры).

1) защитная (интерферон усиленно синтезируется в организме при вирусной инфекции);

2) структурная (коллаген входит в состав тканей, участвует в образовании рубца);

3) двигательная (миозин участвует в сокращении мышц);

4) запасная (альбумины яйца);

5) транспортная (гемоглобин эритроцитов переносит питательные вещества и продукты обмена);

6) рецепторная (белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток);

7) регуляторная (регуляторные белки определяют активность генов);

8) белки-гормоны участвуют в гуморальной регуляции (инсулин регулирует уровень сахара в крови);

9) белки-ферменты катализируют все химические реакции в организме;

10) энергетическая (при распаде 1 г белка выделяется 17 кдж энергии).

Это моно– и полимеры, в состав которых входит углерод, водород и кислород в соотношении 1: 2: 1.

1) энергетическая (при распаде 1 г углеводов выделяется 17,6 кдж энергии);

2) структурная (целлюлоза, входящая в состав клеточной стенки у растений);

3) запасающая (запас питательных веществ в виде крахмала у растений и гликогена у животных).

Жиры (липиды) могут быть простыми и сложными. Молекулы простых липидов состоят из трехатомного спирта глицерина и трех остатков жирных кислот. Сложные липиды являются соединениями простых липидов с белками и углеводами.

1) энергетическая (при распаде 1 г липидов образуется 38,9 кдж энергии);

2) структурная (фосфолипиды клеточных мембран, образующие липидный бислой);

3) запасающая (запас питательных веществ в подкожной клетчатке и других органах);

4) защитная (подкожная клетчатка и слой жира вокруг внутренних органов предохраняют их от механических повреждений);

5) регуляторная (гормоны и витамины, содержащие липиды, регулируют обмен веществ);

6) теплоизолирующая (подкожная клетчатка сохраняет тепло). АТФ

Молекула АТФ (аденозинтрифосфорной кислоты) состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты, соединенных между собой макроэргической связью. АТФ образуется в митохондриях в процессе фосфорилирования. При ее гидролизе высвобождается большое количество энергии. АТФ является основным макроэргом клетки – аккумулятором энергии в виде энергии высокоэнергетических химических связей.

ЛЕКЦИЯ № 3. Нуклеиновые кислоты. Биосинтез белка

Нуклеиновые кислоты – это фосфорсодержащие биополимеры, мономерами которых являются нуклеотиды. Цепи нуклеиновых кислот включают от нескольких десятков до сотен миллионов нуклеотидов.

Существует 2 вида нуклеиновых кислот – дезоксирибо-нуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Нуклеотиды, входящие в состав ДНК, содержат углевод, дезокси-рибозу, в состав РНК – рибозу.

ДНК

Как правило, ДНК представляет собой спираль, состоящую из двух комплиментарных полинуклеотидных цепей, закрученных вправо. В состав нуклеотидов ДНК входят: азотистое основание, дезоксирибоза и остаток фосфорной кислоты. Азотистые основания делят на пуриновые (аденин и гуанин) и пиримидиновые (ти-мин и цитозин). Две цепи нуклеотидов соединяются между собой через азотистые основания по принципу комплементарности: между аденином и тимином возникают две водородные связи, между гуанином и цитозином – три.

1) обеспечивает сохранение и передачу генетической информации от клетки к клетке и от организма к организму, что связано с ее способностью к репликации;

2) регуляция всех процессов, происходящих в клетке, обеспечиваемая способностью к транскрипции с последующей трансляцией.

Процесс самовоспроизведения (авто-репродукции) ДНК называется репликацией. Репликация обеспечивает копирование генетической информации и передачу ее из поколения в поколение, генетическую идентичность дочерних клеток, образующихся в результате митоза, и постоянство числа хромосом при митоти-ческом делении клетки.

Репликация происходит в синтетический период интерфазы митоза. Фермент репликаза движется между двумя цепями спирали ДНК и разрывает водородные связи между азотистыми основаниями. Затем к каждой из цепочек с помощью фермента ДНК-полимеразы по принципу комплементарности достраиваются нуклеотиды дочерних цепочек. В результате репликации образуются две идентичные молекулы ДНК. Количество ДНК в клетке удваивается. Такой способ удвоения ДНК называется полуконсервативным, так как каждая новая молекула ДНК содержит одну «старую» и одну вновь синтезированную полинуклеотидную цепь.

РНК

РНК – одноцепочечный полимер, в состав мономеров которого входят пуриновые (аденин, гуанин) и пиримидиновые (урацил, цитозин) азотистые основания, углевод рибоза и остаток фосфорной кислоты.

Различают 3 вида РНК: информационную, транспортную и рибосомальную.

Информационная РНК (и-РНК) располагается в ядре и цитоплазме клетки, имеет самую длинную полинуклеотидную цепь среди РНК и выполняет функцию переноса наследственной информации из ядра в цитоплазму клетки.

Транспортная РНК (т-РНК) также содержится в ядре и цитоплазме клет-ки, ее цепь имеет наиболее сложную структуру, а также является самой короткой (75 нуклеотидов). Т-РНК доставляет аминокислоты к рибосомам в процессе трансляции – биосинтеза белка.

Рибосомальная РНК (р-РНК) содержится в ядрышке и рибосомах клетки, имеет цепь средней длины. Все виды РНК образуются в процессе транскрипции соответствующих генов ДНК.

Биосинтез белка

Биосинтез белка в организме эукариот происходит в несколько этапов.

1. Транскрипция – это процесс синтеза и-РНК на матрице ДНК. Цепи ДНК в области активного гена освобождаются от ги-стонов. Водородные связи между комплементарными азотистыми основаниями разрываются. Основной фермент транскрипции РНК-полимераза присоединяется к промотору – специальному участку ДНК. Транскрипция проходит только с одной (кодоген-ной) цепи ДНК. По мере продвижения РНК-полимеразы по кодо-генной цепи ДНК рибонуклеотиды по принципу комплементарности присоединяются к цепочке ДНК, в результате образуется незрелая про-и-РНК, содержащая как кодирующие, так и некоди-рующие нуклеотидные последовательности.

Читайте также:  Из за чего высокий холестерин причины

2. Затем происходит процессинг – созревание молекулы РНК. На 5-конце и-РНК формируется участок (КЭП), через который она соединяется с рибосомой. Ген, т. е. участок ДНК, кодирующий один белок, содержит как кодирующие последовательности нуклеотидов – экзоны, так и некодирующие – интроны. При про-цессинге интроны вырезаются, а экзоны сшиваются. В результате на 5-конце зрелой и-РНК находится кодон-инициатор, который первым войдет в рибосому, затем следуют кодоны, кодирующие аминокислоты полипептида, а на 3-конце – кодоны-терминато-ры, определяющие конец трансляции. Цифрами 3 и 5 обозначаются соответствующие углеродные атомы рибозы. Кодоном называется последовательность из трех нуклеотидов, кодирующая какую-либо аминокислоту – триплет. Рамка считывания нуклеиновых кислот предполагает «слова»-триплеты (кодоны), состоящие из трех «букв»-нуклеотидов.

Транскрипция и процессинг происходят в ядре клетки. Затем зрелая и-РНК через поры в мембране ядра выходит в цитоплазму, и начинается трансляция.

3. Трансляция – это процесс синтеза белка на матрице и РНК. В начале и-РНК 3-концом присоединяется к рибосоме. Т-РНК доставляют к акцепторному участку рибосомы аминокислоты, которые соединяются в полипептидную цепь в соответствии с шифрующими их кодонами. Растущая полипептидная цепь перемещается в донорный участок рибосомы, а на акцепторный участок приходит новая т-РНК с аминокислотой. Трансляция прекращается на кодонах-терминаторах. Генетический код

Это система кодирования последовательности аминокислот белка в виде определенной последовательности нуклеотидов в ДНК и РНК.

Единица генетического кода (кодон) – это триплет нуклеоти-дов в ДНК или РНК, кодирующий одну аминокислоту.

Всего генетический код включает 64 кодона, из них 61 кодирующий и 3 некодирующих (кодоны-терминаторы, свидетельствующие об окончании процесса трансляции).

Кодоны-терминаторы в и-РНК: УАА, УАГ, УГА, в ДНК: АТТ, АТЦ, АЦТ.

Начало процесса трансляции определяет кодон-инициатор (АУГ, в ДНК – ТАЦ), кодирующий аминокислоту метионин. Этот кодон первым входит в рибосому. Впоследствии метионин, если он не предусмотрен в качестве первой аминокислоты данного белка, отщепляется.

Генетический код обладает характерными свойствами.

1. Универсальность – код одинаков для всех организмов. Один и тот же триплет (кодон) в любом организме кодирует одну и ту же аминокислоту.

2. Специфичность – каждый кодон шифрует только одну аминокислоту.

3. Вырожденность – большинство аминокислот могут кодироваться несколькими кодонами. Исключение составляют 2 аминокислоты – метионин и триптофан, имеющие лишь по одному варианту кодона.

4. Между генами имеются «знаки препинания» – три специальных триплета (УАА, УАГ, УГА), каждый из которых обозначает прекращение синтеза полипептидной цепи.

Источник: cyberpedia.su

Строение и биологическая роль АТФ.

ВНИМАНИЕ! САЙТ ЛЕКЦИИ.ОРГ проводит недельный опрос. ПРИМИТЕ УЧАСТИЕ. ВСЕГО 1 МИНУТА.

Аденозинтрифосфат или сокращенно АТФ – это универсальное энергетическое вещество организма. АТФ – нуклеотид, в состав молекулы которого входят азотистое основание – аденин, углевод – рибоза и три остатка фосфорной кислоты.

Особенностью молекулы АТФ является то, что второй и третий остатки фосфорной кислоты присоединяются связью, богатой энергией, иначе называемой макроэргической связью. Часто соединения, имеющие макроэргическую связь (а мы столкнемся с ними в процессе изучения предмета) обозначатся термином «макроэрги» или макроэргические вещества.

Строение АТФ можно отразить схемой

Аденин – рибоза – Ф.К. – Ф.К. – Ф.К.

аденозин

При использовании АТФ в качестве источника энергии обычно происходит отщепление путем гидролиза последнего остатка фосфорной кислоты.

АТФ + Н2О → АДФ + Н3РО4 + энергия

В физиологических условиях, то есть при условиях, которые имеются в живой клетке, расщепление моля АТФ сопровождается выделением 10 – 12 ккал энергии (43 -50 кДж).

Главными потребителями энергии АТФ в организме являются

·транспорт молекул и ионов через мембраны.

Таким образом биологическая роль АТФ заключается в том, что это вещество в организме является своего родом эквивалентом ЕВРО или доллара в экономике. Основным поставщиком АТФ в клетке является тканевое дыхание – завершающий этап катаболизма, протекающий в митохондриях большинства клеток организма.

Тканевое дыхание.

Тканевое дыхание – это основной способ получения АТФ используемый абсолютным большинством клеток организма.

В процессе тканевого дыхания от окисляемого вещества отнимаются два атомов водорода и по дыхательной цепи, состоящей из ферментов и коферментов, передаются на молекулярный кислород, доставляемый кровью из воздуха во все ткани организма. В результате присоединения атомов кислорода и водорода образуется вода. За счет энергии, выделяющееся при движении электронов, по дыхательной цепи, в митохондриях осуществляется синтез АТФ из АДФ и фосфорной кислоты. Обычно синтез трех молекул АТФ сопровождается образованием одной молекулы воды.

В качестве субстрата окисления в тканевом дыхании используются разнообразные промежуточные продукты распада углеводов, жиров и белков. Однако наиболее часто подвергаются окислению промежуточные продукты цикла лимонной кислоты, называемого иначе циклом трикарбоновых кислот или циклом Кребса (изолимонная, альфа-кетоглутаровая, янтарная, яблочная кислоты – это субстраты цикла трикарбоновых кислот). Цикл лимонной кислоты – это завершающий этап катаболизма, в ходе которого происходит окисление остатка уксусной кислоты, входящей а ацетилкофермент А до углекислого газа и воды. В свою очередь ацетилкофермент А – универсальное вещество организма, в которое при своем распаде превращаются главные органические вещества – белки, жиры и углеводы. Тканевое дыхание – это сложный ферментативный процесс. Ферменты тканевого дыхания делятся на три группы: никотинамидные дегидрогеназы, флавиновые дегидрогеназы и цитохромы. Эти ферменты и составляют дыхательную цепь.

Никотинамидные дегидрогеназы отнимают два атома водорода у окисляемого субстрата и присоединяют его к молекуле кофермента НАД (никотинамидадениндинуклеотид) При этом НАД переходит в свою восстановленную форму НАД.Н2.

Флавиновые дегидрогеназы отщепляют два атома водорода от НАД.Н2 и временно присоединяют к ФМН (флавинмононуклеотид). Это кофермент в состав которого входит витамин В2. Затем происходит передача двух атомов водорода флавину, который в свою очередь передает эти атомы на цитохромы.

Цитохромы – это ферменты, содержащие в своем составе ионы трехвалентного железа, которые, присоединяя водород, переходят в двухвалентную форму. Цитохромов несколько и они обозначаются латинскими буквами a , a -3 b , c. Цитохромы передают водород на молекулярный кислород, и образуется вода.

При движении по дыхательной цепи выделяется энергия, которая аккумулируется виде молекул АТФ. Этот процесс называется окислительным или дыхательным фосфорилированием. В сутки в организме образуется не менее 40 кг АТФ. Особенно интенсивно эти процессы идут в мышцах при физической работе.

13. Анаэробное, микросомальное и свободнорадикальное окисление.

В некоторых случаях отнятие атома водорода от окисляемых веществ происходит в цитоплазме. Эти процессы происходят без участия кислорода. Поэтому акцепторы водорода здесь другие. Наиболее часто водород присоединяет пировиноградная кислота, возникающая при распаде углеводов и аминокислот. Пировиноградная кислота может присоединить водород и таким образом превратиться в лактат или молочную кислоту. Такой процесс, происходящий, в частности в мышцах при недостатке кислорода, называется анаэробным окислением или гликолизом. За счет выделяющейся при этом энергии в цитоплазме также идет образование АТФ. Процесс образования АТФ в цитоплазме получил название анаэробного или субстратного фосфорилирования. Этот процесс гораздо менее эффективен, нежели тканевое дыхание.

Читайте также:  Соленая скумбрия вред и польза

В некоторых случаях при окислении атомы кислорода включаются в молекулы окисляемых веществ. Такое окисление протекает на мембранах эндоплазматической сети и называется микросомальное окисление. За счет включения кислорода окисляемого субстрата возникает гидроксильная группа (-ОН). Поэтому этот процесс часто называют гидроксилирование. В этом процессе активное участие принимает аскорбиновая кислота или витамин С.

Биологическая роль этого процесса не связана с синтезом АТФ. Она состоит в следующем.

1. Включаются атомы кислорода в синтезируемее вещества.

2. Обезвреживаются различные токсичные вещества, так как включение атома кислорода в молекулу яда уменьшает токсичность этого яда, делает его водорастворимым, и облегчат почкам его выведение.

В редких случаях кислород, поступающий из воздуха в организм, превращается в активные формы (О2, НО2, НО+, Н2 О2 и др.), называемые свободными радикалами или оксидантами.

Свободные радикалы кислорода вызывают реакции окисления, затрагивающие белки, жиры, нуклеиновые кислоты. Это окисление получило название свободнорадикальное окисление.

Особенное влияние этот процесс оказывает на жирные кислоты. Перекисное окисление липидов (ПОЛ) помогает обновлению липидного слоя биологических мембран.

Свободнорадикальное окисление может приносить и вред, если происходит слишком интенсивно. Поэтому в организме существует специальная антиоксидантная система, важнейшей частью которой является витамин Е (токоферол).

Вопросы семинарского занятия см. в начале лекции!

Источник: lektsii.org

Общая биология: конспект лекций (Е. А. Козлова)

Конспект лекций по общей биологии предназначен для студентов медицинских ВУЗов или колледжей. В нем освещены вопросы строения клетки, даны характеристики всех ее компонентов, описаны основные классы возбудителей заболеваний, рассмотрены проблемы экологии. Используя данный конспект при подготовке к экзамену, студенты смогут в сжатые сроки систематизировать знания по данному предмету, сформулировать план ответов на вопросы экзаменатора.

Оглавление

  • ЛЕКЦИЯ № 1. Введение
  • ЛЕКЦИЯ № 2. Химический состав живых систем. Биологическаяроль белков, полисахаридов, липидов и АТФ
  • ЛЕКЦИЯ № 3. Нуклеиновые кислоты. Биосинтез белка
  • ЛЕКЦИЯ № 4. Основные клеточные формы
  • ЛЕКЦИЯ № 5. Неклеточные формы жизни – вирусы, бактериофаги
  • ЛЕКЦИЯ № 6. Строение и функции половых клеток (гамет)
  • ЛЕКЦИЯ № 7. Бесполое размножение. Формы и биологическая роль

Приведённый ознакомительный фрагмент книги Общая биология: конспект лекций (Е. А. Козлова) предоставлен нашим книжным партнёром — компанией ЛитРес.

ЛЕКЦИЯ № 2. Химический состав живых систем. Биологическаяроль белков, полисахаридов, липидов и АТФ

1. Обзор химического строения клетки

Все живые системы содержат в различных соотношениях химические элементы и построенные из них химические соединения, как органические, так и неорганические.

По количественному содержанию в клетке все химические элементы делят на 3 группы: макро-, микро– и ультрамикроэлементы.

Макроэлементы составляют до 99 % массы клетки, из которых до 98 % приходится на 4 элемента: кислород, азот, водород и углерод. В меньших количествах клетки содержат калий, натрий, магний, кальций, серу, фосфор, железо.

Микроэлементы – преимущественно ионы металлов (кобальта, меди, цинка и др.) и галогенов (йода, брома и др.). Они содержатся в количествах от 0,001 % до 0,000001 %.

Ультрамикроэлементы. Их концентрация ниже 0,000001 %. К ним относят золото, ртуть, селен и др.

Химическое соединение – это вещество, в котором атомы одного или нескольких химических элементов соединены друг с другом посредством химических связей. Химические соединения бывают неорганическими и органическими. К неорганическим относят воду и минеральные соли. Органические соединения – это соединения углерода с другими элементами.

Основными органическими соединениями клетки являются белки, жиры, углеводы и нуклеиновые кислоты.

2. Биополимеры Белки

Это полимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота. Молекула белка может иметь 4 уровня структурной организации (первичная, вторичная, третичная и четвертичная структуры).

1) защитная (интерферон усиленно синтезируется в организме при вирусной инфекции);

2) структурная (коллаген входит в состав тканей, участвует в образовании рубца);

3) двигательная (миозин участвует в сокращении мышц);

4) запасная (альбумины яйца);

5) транспортная (гемоглобин эритроцитов переносит питательные вещества и продукты обмена);

6) рецепторная (белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток);

7) регуляторная (регуляторные белки определяют активность генов);

8) белки-гормоны участвуют в гуморальной регуляции (инсулин регулирует уровень сахара в крови);

9) белки-ферменты катализируют все химические реакции в организме;

10) энергетическая (при распаде 1 г белка выделяется 17 кдж энергии).

Это моно– и полимеры, в состав которых входит углерод, водород и кислород в соотношении 1: 2: 1.

1) энергетическая (при распаде 1 г углеводов выделяется 17,6 кдж энергии);

2) структурная (целлюлоза, входящая в состав клеточной стенки у растений);

3) запасающая (запас питательных веществ в виде крахмала у растений и гликогена у животных).

Жиры (липиды) могут быть простыми и сложными. Молекулы простых липидов состоят из трехатомного спирта глицерина и трех остатков жирных кислот. Сложные липиды являются соединениями простых липидов с белками и углеводами.

1) энергетическая (при распаде 1 г липидов образуется 38,9 кдж энергии);

2) структурная (фосфолипиды клеточных мембран, образующие липидный бислой);

3) запасающая (запас питательных веществ в подкожной клетчатке и других органах);

4) защитная (подкожная клетчатка и слой жира вокруг внутренних органов предохраняют их от механических повреждений);

5) регуляторная (гормоны и витамины, содержащие липиды, регулируют обмен веществ);

6) теплоизолирующая (подкожная клетчатка сохраняет тепло). АТФ

Молекула АТФ (аденозинтрифосфорной кислоты) состоит из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты, соединенных между собой макроэргической связью. АТФ образуется в митохондриях в процессе фосфорилирования. При ее гидролизе высвобождается большое количество энергии. АТФ является основным макроэргом клетки – аккумулятором энергии в виде энергии высокоэнергетических химических связей.

Оглавление

  • ЛЕКЦИЯ № 1. Введение
  • ЛЕКЦИЯ № 2. Химический состав живых систем. Биологическаяроль белков, полисахаридов, липидов и АТФ
  • ЛЕКЦИЯ № 3. Нуклеиновые кислоты. Биосинтез белка
  • ЛЕКЦИЯ № 4. Основные клеточные формы
  • ЛЕКЦИЯ № 5. Неклеточные формы жизни – вирусы, бактериофаги
  • ЛЕКЦИЯ № 6. Строение и функции половых клеток (гамет)
  • ЛЕКЦИЯ № 7. Бесполое размножение. Формы и биологическая роль

Приведённый ознакомительный фрагмент книги Общая биология: конспект лекций (Е. А. Козлова) предоставлен нашим книжным партнёром — компанией ЛитРес.

Источник: kartaslov.ru