Роль перекисного окисления липидов в организме

Роль повреждения липидов при старении

Одним из механизмов управления внутриклеточного метаболизма является перекисное окисление липидов. Усиление этого процесса ведет к образованию избыточного количества свободных радикалов, что нарушает состояние клеточных мембран и коллоидное состояние протоплазмы. В статье рассмотрены причины пероксидного окисления липидов и его последствия при процессе старения человеческого организма.

  • Содержание:
  • Содержание:

Увеличенное образование свободных радикалов в организме и связанное с этим усиление процессов пероксидации липидов (которое иногда называют «оксидативным стрессом») сопровождается рядом нарушений в свойствах биологических мембран и функционировании клеток. В таблице 2 (кликнуть мышкой для увеличения) приведены наиболее важные изменения в мембранных структурах при перекисном окислении липидов.

Клетке для жизнедеятельности необходима энергия. Она получает ее из
окислительных процессов. Это сложная цепочка ферментативных
пре­вращений, в результате которых атмосферный кислород претерпевает че­тырехэлектронное восстановление и образуется вода. Но иногда восста­новление кислорода проходит не полностью, и тогда в клетке образуются ядовитые химически активные соединения — радикалы. Один из них — ради­кал ОН• (точка обозначает неспаренный электрон) настолько опасен, что даже может разрушить любую молекулу в наших клетках, включая ДНК, а также липидный бислой, интактность которого необходима для нормально-функционирующей клетки.

Научные исследования в области борьбы против старения, таким
образом, в основном направлены на разработки всевозможных антиоксидантов и способы их применения.
Так, корейские ученые разработали пищевую добавку, Saengshik, состоящую из 30 различных компонентов растительного происхождения.
По результатам их исследований, было обнаружено, что смесь достаточно эффективно связывает и нейтрализует свободные радикалы у мышей и повышает антиоксидантную реактивность организма. Результаты, полученные на мышах, были подтверждены на людях.

В России, одной из самых успешных лабораторий по изучению роли митохондрий в процессе старения, является лаборатория В.П. Скулачева, декана факультета биоинженерии и биоинформатики МГУ.

Особые соединения, называемыми «ионами Скулачева», являются органические липофильные катионы, которые в силу своей гидрофобности и электрохимических свойств способны легко преодолевать положительно заряженные мембраны митохондрий и накапливаться в них.
Первая попытка «нагрузить» ионы Скулачева антиоксидантом (убихиноном) была сделана Мерфи (Murphy) еще в 2001 году. Вещество, названное им MitoQ (см. рис.), исправно накапливается в митохондриях, однако серьезных физиологических эффектов не вызывает, во всяком случае – in vivo.
В.П. Скулачевым и его коллегами был сконструирован новый класс липофильных катионов, «нагруженных» более мощными антиоксидантами, названными ими SkQ, формулы которых пока не подлежат разглашению.
Главным отличием их от MitoQ является меньшая токсичность. В итоге разница между максимальной недействующей и минимальной токсичной концентрацией достигает нескольких порядков. Исследования SkQ на целом ряде моделей показали большую по сравнению с MitoQ протекторную эффективность.
В том числе запущены опыты по изучению влияния вещества на продолжительность жизни. Эксперименты еще не закончены, но уже можно говорить о почти двукратном продлении молодости аутбредных мышей (периода, когда еще нет резкого снижения выживаемости животных с возрастом).
Обнадеживающие результаты получены по лечению ретинодистрофии у домашних животных. В 45 случаях из 65 зрение удалось вернуть полностью слепым особям.

Источник: moikompas.ru

Окисление жирных кислот изменяет свойства клеточных мембран

Среди первичных механизмов повреждения клеток при окислительном стрессе лидирует окисление жирнокислотных остатков в фосфолипидах мембран. Это снижает их гидрофобность и нарушает устойчивость мембран, изменяет работу мембраносвязанных ферментов, повышает проницаемость мембран для ионов.

Реакции взаимодействия свободных радикалов с жирными кислотами получили широкую известность в связи с их актуальностью в пищевой промышленности. Появление неприятного запаха и прогоркание продуктов – это является проявлением перекисного окисления липидов (ПОЛ).

Основным субстратом для свободно-радикальных реакций являются двойные связи полиненасыщенных жирных кислот. В клеточных мембранах полиненасыщенные жирные кислоты находятся в составе фосфолипидов и гликолипидов. Также большое количество фосфолипидов с полиненасыщенными жирными кислотами локализуется в оболочке липопротеинов высокой, низкой и очень низкой плотности, что имеет значение в патогенезе атеросклероза.

Читайте также:  Холестерин лпвп 0 96

В результате свободнорадикального окисления жирных кислот образуются гидроперекиси и диеновые конъюгаты ( первичные продукты), которые очень нестабильны. При участии металлов переменной валентности они быстро метаболизируют во вторичные (альдегиды и диальдегиды) и третичные (шиффовы основания) продукты перекисного окисления липидов.

Перекисное окисление липидов включает в себя несколько стадий:

В момент инициации , например, гидроксил- радикалом атакуется метиленовая группа, расположенная между двойными связями, и выбивается атом водорода, восстанавливающий гидроксил-радикал до воды. Далее в жирной кислоте происходит перестановка двойной связи, смещение радикальной группы и взаимодействие ее с кислородом. В результате образуется липопероксильный радикал.

Дальнейшее взаимодействие полученного липопероксильного радикала с соседними жирными кислотами приводит к его нейтрализации и появлению новых липоперекисных радикалов, т.е. к развитию линейной цепной реакции с появлением новых окисленных жирных кислот.

Развитие реакций перекисного окисления липидов

Кроме линейного развития, может происходить ветвление реакции за счет получения гидроперекисью электронов от каких-либо металлов или при воздействии излучения.

Разветвление и обрыв реакций перекисного окисления липидов

Обрыв цепной реакции происходит при взаимодействии радикалов друг с другом или в реакции с различными антиоксидантами, например, витамином Е, который отдаёт электроны, превращаясь при этом в довольно стабильную окисленную форму.

Продукты перекисного окисления липидов

Первичными продуктами ПОЛ являются гидроперекиси жирных кислот, они подвергаются дальнейшему распаду с образованием вторичных продуктов ПОЛ – различных спиртов, кетонов, альдегидов и диальдегидов, эпоксидов и других соединений.

Наиболее реакционноспособным из вторичных продуктов ПОЛ является малоновый диальдегид (МДА), который способен образовывать ковалентные связи с NH2-группами белков и иных молекул с образованием шиффовых оснований.

Схема реакций образования малонового диальдегида

Роль малонового диальдегида

Малоновый диальдегид (МДА), образующийся при перекисном окислении липидов, способен реагировать с ε-NH2-группами лизина или N-концевыми аминокислотами белков, с NH2-группами фосфолипидов и гликозаминов. МДА формирует мостики внутри молекул и между ними с образованием шиффовых оснований.

Роль малонового диальдегида в образовании сшивок между белками

Роль малонового диальдегида в образовании сшивок между белками и фосфолипидами

В конечном результате после окислительной атаки в белках появляются поперечные сшивки внутри одной молекулы, между разными белками, между белками и фосфолипидами. Из-за этого активность ферментативных белков изменяется, возможности структурных и сократительных белков падают, каналообразующие белки мембраны деформируются и проницаемость мембран возрастает, жизнеспособность и функционирование клетки уменьшаются.

Источник: biokhimija.ru

Перекисное окисление липидов (ПОЛ)

Перекисное окисление липидов (ПОЛ)

Реакции ПОЛ являются свободнорадикальными и постоянно протекают в организме, также как и реакции образования АФК.

В норме они поддерживаются на определенном уровне и выполняют ряд функций:

1. индуцируют апоптоз (запрограммированную гибель клеток);

2. регулируют структуру клеточных мембран и тем самым обеспечивают функционирование ионных каналов, рецепторов, ферментных систем;

3. обеспечивают освобождение из мембраны арахидоновой кислоты, из которой синтезируются биорегуляторы (простагландины, тромбоксаны, лейкотриены);

4. ПОЛ может выступать в качестве вторичного мессенджера, участвуя в трансформации сигналов из внешней и внутренней среды организма, обеспечивая их внутриклеточную передачу;

5. АФК участвуют в клеточном иммунитете и фагоцитозе.

Механизм ПОЛ:

1. Инициация. Инициирует реакцию чаще всего гидроксильный радикал, отнимающий водород от СН2- групп ненасыщенной жирной кислоты L, что приводит к образованию липидного радикала L•:

2. Развитие цепи. Развитие цепи происходит при присоединении кислорода, в результате чего образуется пероксидный радикал LOO• или пероксид липида LOOH (гидроперекиси липидов)

LOО• + LH ? LOOH + LR?•

3. Обрыв цепи. Развитие цепи может останавливаться при взаимодействии свободных радикалов между собой или при взаимодействии с различными антиоксидантами (витамином Е), которые являются донорами электронов:

Читайте также:  Диета от поднятие холестерина

LOO•? + L• ? LOOH + LH

L?•+ Витамин Е ? LH + Витамин Е•?

ВитаминТ Е• + L• ? LH + Витамин Е окисл

В результате ПОЛ происходит преобразование обычных липидов в первичные продукты ПОЛ (гидроперекиси липидов). Это приводит к появлению в мембранах участков («дыр»), через которые наружу выходит содержимое как самих клеток, так и их органелл.

Первичные продукты ПОЛ разрушаются с образованием вторичных продуктов ПОЛ: альдегидов, кетонов, малонового диальдегида, диеновых коньюгатов. Накоплением в крови малонового диальдегида (МДА) объясняется синдром интоксикации, сопровождающий многие заболевания внутренних органов. Реагируя с SH- и СН 3-группами белков, МДА подавляет активность цитохром-оксидаз (угнетая тем самым тканевое дыхание) и гидроксилаз. МДА обуславливает также ускоренное развитие атеросклероза.

При взаимодействии МДА с аминогруппами фосфолипидов образуются конечные продукты ПОЛ – Шиффовы основания. Примером этих соединений является пигмент липофусцин, появляющийся на оболочке глаза, на коже с возрастом. Липофусцин представляет собой смесь липидов и белков, связанных между собой поперечными ковалентными связями и денатурированными в результате взаимодействия с химически активными группами продуктов ПОЛ. Этот пигмент фагоцитируется, но не гидролизуется ферментами лизосом, накапливается в клетках, нарушая их функцию.

Негативные последствия активации ПОЛ:

1. Повреждение липидного бислоя мембран, в результате чего в клетки проникает вода, ионы натрия, кальция, что приводит к набуханию клеток, органелл и их разрушению.

2. Преждевременное старение клеток и организма в целом.

3. Взаимодействие высокореактивных продуктов ПОЛ с аминогруппами белков с образованием Шиффовых оснований.

4. Изменение текучести (вязкости) мембран, в результате чего нарушается транспортная функция мембран (функционирование ионных каналов).

5. Нарушение активности мембраносвязанных ферментов, рецепторов.

Активация ПОЛ характерна для многих заболеваний и патологических состояний:

1. атеросклероз и другие сердечнососудистого заболевания;

2. поражения ЦНС (болезнь Паркинсона, Альцгеймера);

3. воспалительные процессы любого генеза;

4. дистрофия мышц (болезнь Дюшенна);

5. онкологические заболевания;

6. радиационные поражения;

7. бронхолегочные патологии.

Данный текст является ознакомительным фрагментом.

Источник: bio.wikireading.ru

ПОЛ (перекисное окисление липидов)

Исследование, направленное на выявление в образце крови продуктов перекисного окисления липидов и их активности в целях оценки роли данных веществ в реакциях окислительного повреждения клеток организма (так называемого окислительного стресса).

Перекисное окисление липидов; оценка окислительного повреждения (окислительного стресса).

Синонимы английские

Lipid peroxidation; assessment of oxidative damage (oxidative stress).

Мкмоль/л (микромоль на литр).

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Детям в возрасте до 1 года не принимать пищу в течение 30-40 минут до исследования.
  • Не принимать пищу в течение 2-3 часов до исследования, можно пить чистую негазированную воду.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Перекисное окисление липидов – это химический процесс, каскад реакций превращения липидов (поступающих с пищей или синтезированных в организме) с участием свободных радикалов – активных заряженных молекул. Так как липиды — компоненты мембран всех клеток организма, реакции перекисного окисления могут приводить к нарушению их структуры и повреждению клетки, что является одним из механизмов патогенеза ряда заболеваний.

Реакции ПОЛ постоянно происходят в организме в норме в определенной степени, которая не должна превышаться во избежание их повреждающего действия. Перекисное окисление липидов играет важную роль для процесса апоптоза, регулирования структуры мембран и их функций (презентация рецепторов, работа ионных каналов, высвобождение биологически активных веществ, передача сигналов между клетками и т.д.).

Чрезмерная активность ПОЛ может приводить к разрушению мембраны клетки, проникновению или выходу из нее веществ, которых не должно быть в норме, что ведет к нарушению жизнедеятельности клеток (их преждевременное старение, разрушение, измененные функции передачи веществ, связывания ферментов и рецепторов). Повышенная активность ПОЛ может быть причиной развития сердечно-сосудистых заболеваний (атеросклероза и сопутствующей патологии), поражения ЦНС, воспалительных процессов, заболеваний респираторного тракта, одним из факторов новообразований, нарушения функции иммунной системы.

Читайте также:  Повышенный холестерин при гипотонии

В организме в роли ингибирующего фактора (т.е. сдерживающего реакции ПОЛ) выступает антиоксидантная система. Таким образом, патологические реакции перекисного окисления липидов могут быть как при чрезмерной активности самих этих процессов, так и при недостаточности работы антиоксидантной системы.

Исследование позволяет оценить количественно, насколько активно протекают реакции ПОЛ в организме и насколько с ними справляются собственные защитные системы организма. Такой анализ продуктов перекисного окисления липидов играет важную роль в определении связи их повреждающего действия с возникновением, развитием или прогрессированием того или иного заболевания. Исследование проводится методом спектрофотометрии, основанным на изучении физико-химических свойств веществ, в частности их спектров поглощения. Таким способом из образца венозной крови пациента выделяются анализируемые вещества, а затем происходит их количественный подсчет, выражаемый в мкмоль/л. Спекрофотометрический метод оценки продуктов перекисного окисления липидов — достаточно современный и точный (погрешность составляет +/- 5,2 %), отличается высокой специфичностью (за счет использования определенных длин волн), чувствительностью (1,0 нмоль/л) и достоверностью, о чем свидетельствует низкий процент ложноположительных и ложноотрицательных результатов (достоверность более 90 %).

Таким образом, анализ продуктов реакций ПОЛ позволяет понять механизмы развития серьезных заболеваний, определить так называемый маркер окислительного стресса организма. При своевременно выявленном нарушении есть возможность оптимально подобрать лечение и предотвратить развитие заболевания, его прогрессирование, направить его течение по более благоприятному варианту. Следует отметить, что интерпретация результата осуществляется только врачом с учетом всех имеющихся данных анамнеза и других методов диагностики.

Для чего используется исследование?

  • Для диагностики оксидативного стресса и степени интоксикации организма вследствие повышенной активности реакций перекисного окисления липидов.
  • Для выявления дефицита антиоксидантной системы и оценки риска заболеваний, ассоциированных с ее недостатком (заболевания сердечно-сосудистой системы, иммунодефициты, доброкачественные и злокачественные опухоли, гормональные нарушения, аутоиммунные заболевания, воспалительные процессы и др.).
  • Для выявления генетических форм дефицита ферментов.

Когда назначается исследование?

  • При заболеваниях сердечно-сосудистой системы (атеросклеротическое повреждение сосудов, ишемическая болезнь сердца, гипертоническая болезнь).
  • При метаболических заболеваниях (в первую очередь, при сахарном диабете).
  • При предраковых заболеваниях и злокачественных новообразованиях.
  • При заболеваниях дыхательной системы (ХОБЛ, бронхиальная астма).
  • При поражении ЦНС (болезнь Паркинсона, болезнь Альцгеймера, ОНМК, энцефалопатии).
  • При аутоиммунных заболеваниях (ревматоидный артрит, системная красная волчанка, диффузная склеродермия).
  • При бесплодии и привычном невынашивании беременности.
  • При хронических инфекциях и воспалительных процессах.
  • При подозрении на врождённый дефицит ферментов.

Что означают результаты?

Референсные значения: 2.2 – 4.8 мкмоль/л.

При повышении результата относительно референсного диапазона можно рассматривать процесс перекисного окисления липидов как фактор развития или прогрессирования какого-либо патологического процесса. Это позволяет подбирать терапию, исходя из патогенетического процесса, т.е. механизма развития патологии, что делает ее наиболее оптимальной.

  • Клинический анализ крови: общий анализ, лейкоцитарная формула, СОЭ (с микроскопией мазка крови при выявлении патологических изменений)
  • Базовые биохимические показатели

Кто назначает исследование?

Терапевт, врач общей практики, кардиолог, эндокринолог, онколог, пульмонолог, токсиколог, нутрициолог.

Литература

  • Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993 May; 57.
  • Ramana KV, Srivastava S, Singhal SS. Lipid peroxidation products in human health and disease 2014. Oxid Med Cell Longev. 2014;2014:162414.
  • Niki E. Lipid peroxidation products as oxidative stress biomarkers. Biofactors. 2008;34(2):171-80.
  • Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017 Jan 15; 482(3):419-425.

Источник: helix.ru