Расщепление липидов в клетке происходит в

Расщепление липидов в клетке происходит в

1.Где протекает анаэробный этап гликолиза?
А) в митохондриях
Б) в легких
В) в пищеварительной трубке
Г) в цитоплазме

2. Ферментативное расщепление глюкозы без участия кислорода – это:
А) подготовительный этап обмена
Б) пластический обмен
В) гликолиз
Г) биологическое окисление

3. 38 молекул АТФ синтезируются в клетке в процессе:
А) окисления молекулы глюкозы
Б) брожения
В) фотосинтеза
Г) хемосинтеза

4. На каком из этапов энергетического обмена синтезируются две молекулы АТФ:
А) гликолиза
Б) подготовительного этапа
В) кислородного этапа
Г) поступления веществ в клетку

5. Расщепление липидов до глицерина и жирных кислот происходит в:
А) подготовительную стадию энергетического обмена
Б) процессе гликолиза
В) кислородную стадию энергетического обмена
Г) ходе пластического обмена

6. В бескислородной стадии энергетического обмена расщепляются молекулы:
А) глюкозы до пировиноградной кислоты
Б) белка до аминокислот
В) крахмала до глюкозы
Г) пировиноградной кислоты до углекислого газа и воды

7. На подготовительной стадии энергетического обмена исходными веществами являются:
А) аминокислоты
Б) полисахариды
В) моносахариды
Г) жирные кислоты

8. АТФ синтезируется в процессе:
А) расщепления белков до аминокислот
Б) репликации ДНК
В) окисления пировиноградной кислоты
Г) синтеза гликогена из глюкозы

9. Кислородное расщепление глюкозы значительно эффективнее брожения, так как при этом:
А) освобождаемая энергия выделяется в виде тепла
Б) синтезируется 2 молекулы АТФ
В) происходит использование энергии
Г) синтезируется 38 молекул АТФ

10. Установите соответствие.

А. Автотрофы
Б. Хемотрофы
В. Фототрофы.

1. зеленые растения
2. нитрифицирующие бактерии
3. железобактерии
4. грибы
5. животные

11. Установите соответствие.

А. Пластический обмен.
Б. Энергетический обмен.

1. Ферментативное расщепление гликогена.
2. Разборка мембран отслуживших свой срок органелл.
3. Самосборка биомембран.
4. Окисление глюкозы до молочной кислоты.
5. Самоудвоение ДНК.
6. Биосинтез РНК на матрице ДНК.
7. Спиртовое брожение.
8. Присоединение жирных кислот к глицерину с образованием жиров
9. Биосинтез глюкозы из диоксида углерода при участии света.

12. Назовите органоид клетки, в котором вырабатывается универсальный носитель энергии.

13. Охарактеризуйте первый этап энергетического обмена по следующим позициям.

1. Название этапа: .
2. Исходные вещества:
3. Образующиеся продукты:
4. Энергетический выход:

14. Охарактеризуйте второй этап энергетического обмена по следующим позициям.

1. Название этапа: .
2. Исходные вещества:
3. Образующиеся продукты:
4. Энергетический выход:

1. Название этапа: Бескислородный (гликолиз).
2. Исходные вещества: глюкоза.
3. Образующиеся продукты: молочная кислота, спирт, углекислый газ, уксусная кислота, ацетон.
4. Энергетический выход: образуется 2 молекулы АТФ. В виде химической связи в молекуле АТФ сохраняется 40% энергии, а остальная рассеивается в виде тепла.

1) Подготовительная стадия энергетического обмена: сложные органические вещества (белки, жиры, углеводы) разлагаются до простых органических веществ (аминокислот, жирных кислот, моносахаров). Энергия, которая при этом выделяется, рассеивается в форме тепла (АТФ не образуется).

2) Гликолиз происходит в цитоплазме. Глюкоза окисляется до двух молекул пировиноградной кислоты (ПВК), при этом образуется 4 атома водорода и энергия на 2 АТФ. В бескислородных условиях из ПВК и водорода образуется молочная кислота (молочнокислое брожение) либо спирт и углекислый газ (спиртовое брожение).

3) В присутствии кислорода продукты гликолиза (ПВК и Н) окисляются в митохондриях до углекислого газа и воды, при этом образуется энергия на 36 АТФ.

16. Эффективность кислородного расщепления глюкозы в 18 раз выше, чем при гликолизе. Объясняется это тем, что кислородный этап идет в митохондриях клетки, где возможна эффективная работа «протонной помпы» и связывание прошедших через нее протонов с анионом кислорода, поступающим из внешней среды. Результатом этого взаимодействия является вода. В отсутствие кислорода концентрация протонов возросла бы до некоторого предельного значения, после которого аэробный процесс в митохондриях прекратился бы. Именно это и происходит при остановке сердца и прекращении поступления в клетки кислорода, что приводит организм к гибели.

Источник: www.sites.google.com

Липидный обмен

Липидный обмен, или метаболизм липидов — сложный биохимический и физиологический процесс, происходящий в некоторых клетках живых организмов.

Липидный обмен включает в себя следующие процессы:

  • Расщепление, переваривание и всасывание липидов в пищеварительном тракте, поступающих вместе с пищей.
  • Транспорт жиров из кишечника с помощью хиломикронов.
  • Обмен триацилглицеролов.
  • Обмен фосфолипидов.
  • Обмен холестерола.
  • Взаимопревращения жирных кислот и кетоновых тел.
  • Липогенез.
  • Катаболизм липидов — липолиз.
  • Катаболизм жирных кислот.

Термин «липиды» объединяет вещества, обладающие общим физическим свойством — гидрофобностью, то есть нерастворимостью в воде. Однако такое определение в настоящее время является не совсем корректным ввиду, того, что некоторые группы (триацилглицерины, фосфолипиды, сфинголипиды и др.) проявляют себя как амфифильные или дифильные соединения, то есть способные растворяться как в полярных веществах (гидрофильность), так и в неполярных (гидрофобность). По структуре липиды настолько разнообразны, что у них отсутствует общий признак химического строения. Липиды разделяют на классы, в которые объединяют молекулы, имеющие сходное химическое строение и общие биологические свойства.

Читайте также:  Рыбий жир при атеросклерозе

Основную массу липидов в организме составляют жиры — триацилглицеролы, служащие формой депонирования энергии. Жиры располагаются преимущественно в подкожной жировой ткани и выполняют также функции теплоизоляционной и механической защиты.

Фосфолипиды — большой класс липидов, получивший своё название из-за остатка фосфорной кислоты, придающего им свойства амфифильности. Благодаря этому свойству фосфолипиды формируют бислойную структуру мембран, в которую погружены белки. Клетки или отделы клеток, окружённые мембранами, отличаются по составу и набору молекул от окружающей среды, поэтому химические процессы в клетке разделены и ориентированы в пространстве, что необходимо для регуляции метаболизма.

Стероиды, представленные в животном мире холестеролом и его производными, выполняют разнообразные функции. Холестерол — важный компонент мембран и регулятор свойств гидрофобного слоя. Производные холестерола (жёлчные кислоты) необходимы для переваривания жиров. Стероидные гормоны, синтезируемые из холестерола, участвуют в регуляции энергетического, водно-солевого обменов, половых функций. Кроме стероидных гормонов, многие производные липидов выполняют регуляторные функции и действуют, как и гормоны, в очень низких концентрациях. Например, тромбоцитактивирующий фактор — фосфолипид особой структуры — оказывает сильное влияние на агрегацию тромбоцитов в концентрации 10-12 М; эйкозаноиды, производные полиеновых жирных кислот, вырабатываемые почти всеми типами клеток, вызывают разнообразные биологические эффекты в концентрациях не более 10-9 М. Из приведённых примеров следует, что липиды обладают широким спектром биологических функций.

В тканях человека количество разных классов липидов существенно различается. В жировой ткани жиры составляют до 75 % сухого веса. В нервной ткани липидов содержится до 50 % сухого веса, основные из них фосфолипиды и сфингомиелины (30 %), холестерол (10 %), ганглиозиды и цереброзиды (7 %). В печени общее количество липидов в норме не превышает 10—13 %.

Нарушения обмена липидов приводят к развитию многих заболеваний, но среди людей наиболее распространены два из них — ожирение и атеросклероз.

Суточная потребность человека в жирах составляет 70—80 г, хотя в пищевом рационе их содержание может колебаться от 80 до 130 г.

Переваривание липидов в желудке

В желудке имеется фермент липаза, способный катализировать расщепление триацилглицеролов. Однако оптимальной средой её действия является среда, близкая к нейтральной. Поэтому липаза в желудке у взрослых людей практически неактивна из-за малых значений pH.

Однако у детей ситуация обстоит несколько по-другому: желудок детей имеет при рождении среду, близкую к нейтральной (pH (среднее) = 5,5). Это явление обусловлено основным продуктом питания детей — молоком (содержит белки и жирных кислоты (количество углерода меньше 14)). Так, фермент липаза выполняет ключевую роль в метаболизме липидов у детей [ источник не указан 333 дня ] .

Переваривание липидов в кишечнике

В двенадцатиперстной кишке пища подвергается действию желчи и сока поджелудочной железы. На первом этапе там происходит эмульгирование жиров.

Эмульгирование жиров

Жиры составляют до 90 % липидов, поступающих с пищей. Переваривание жиров происходит в тонком кишечнике, однако уже в желудке небольшая часть жиров гидролизуется под действием «липазы языка» (лингвальная (лат. lingua — язык) липаза). Этот фермент синтезируется железами на дорсальной поверхности языка и относительно устойчив при кислых значениях рН желудочного сока. Поэтому он действует в течение 1—2 ч на жиры пищи в желудке. Однако вклад этой липазы в переваривание жиров у взрослых людей незначителен. Основной процесс переваривания происходит в тонкой кишке.

Так как жиры — нерастворимые в воде соединения, то они могут подвергаться действию ферментов, растворённых в воде только на границе раздела фаз вода/жир. Поэтому действию панкреатической липазы, гидролизующей жиры, предшествует эмульгирование жиров. Эмульгирование (смешивание жира с водой) происходит в тонком кишечнике под действием солей жёлчных кислот. Жёлчные кислоты в основном конъюгированные: таурохолевая, гликохолевая и другие кислоты.

Гормоны, активирующие переваривание жиров

При поступлении пищи в желудок, а затем в кишечник клетки слизистой оболочки тонкого кишечника начинают секретировать в кровь пептидный гормон холецистокинин (панкреозимин). Этот гормон действует на жёлчный пузырь, стимулируя его сокращение, и на экзокринные клетки поджелудочной железы, стимулируя секрецию пищеварительных ферментов, в том числе панкреатической липазы. Другие клетки слизистой оболочки тонкого кишечника в ответ на поступление из желудка кислого содержимого выделяют гормон секретин. Секретин — гормон пептидной природы, стимулирующий секрецию гидрокарбоната (НСО3 – ) в сок поджелудочной железы.

Нарушения переваривания и всасывания жиров

Нарушение переваривания жиров может быть следствием нескольких причин. Одна из них — нарушение секреции жёлчи из жёлчного пузыря при механическом препятствии оттоку жёлчи. Это состояние может быть результатом сужения просвета жёлчного протока камнями, образующимися в жёлчном пузыре, или сдавлением жёлчного протока опухолью, развивающейся в окружающих тканях. Уменьшение секреции жёлчи приводит к нарушению эмульгирования пищевых жиров и, следовательно, к снижению способности панкреатической липазы гидролизовать жиры.

Нарушение секреции сока поджелудочной железы и, следовательно, недостаточная секреция панкреатической липазы также приводят к снижению скорости гидролиза жиров. В обоих случаях нарушение переваривания и всасывания жиров приводит к увеличению количества жиров в фекалиях — возникает стеаторея (жирный стул). В норме содержание жиров в фекалиях составляет не более 5 %. При стеаторее нарушается всасывание жирорастворимых витаминов (A, D, E, К) и незаменимых жирных кислот, поэтому при длительно текущей стеаторее развивается недостаточность этих незаменимых факторов питания с соответствующими клиническими симптомами. При нарушении переваривания жиров плохо перевариваются и вещества нелипидной природы, так как жир обволакивает частицы пищи и препятствует действию на них ферментов.

Читайте также:  Холестерин 7 это опасно

Всасывание липидов в кишечнике

Ресинтез жиров в слизистой оболочке тонкого кишечника

Основная часть всосавшихся в тонком кишечнике липидов принимает участие в ресинтезе триацилглицеринов. Для этого в эндоплазматическом ретикулуме энтероцитов работают специальные ферменты

Факторы, влияющие на всасывание липидов

Катаболизм липидов

Катаболизм липидов — совокупность всех катаболических процессов липидов, включающая несколько стадий:

Липолиз

Липолиз — катаболический процесс, результатом которого является расщепление жиров, происходящее под действием фермента липазы.

Источник: ru.wikiredia.com

Расщепление липидов в клетке происходит в

Синтез и распад липидов происходит в течение 1-2 суток. Адипоциты жировых тканей играют основную роль в обмене триацилглицеринов, которые в них синтезируются, откладываются про запас и по мере необходимости расходуются. Липолиз – расщепление жира в жировой ткани осуществляется ферментами моно-, ди-, три-глицеридлипазами, которые расщепляют триацилглицериды на глицерин и жирные кислоты. Жирные кислоты и глицерин в клетках организма окисляются до углекислоты и воды, а энергия, образующаяся при этом аккумулируется в молекулах АТФ.

Окисление глицерина начинается с фосфорилирования с участием АТФ. В результате этой реакции образуется фосфоглицериновая кислота, которая при участии НАД подвергается дегидрированию с образованием 3-фосфоглицеринового альдегида:

3-фосфоглицериновый альдегид далее окисляется как при гликолизе. Часть фосфоглицериновой кислоты используется для синтеза фосфатидов.

Окисление жирных кислот происходит по β-углеродному атому в матриксе митохондрий. Жирные кислоты с короткой углеродной цепью (4-10 атомов) проникают в митохондрии; а с более длинной цепью проникают в виде ацилкарнитинов:

жирная кислота + АТФ + карнитин ацилкарнитин

При β-окислении жирных кислот в каждом цикле отделяется по 2 С в виде активированной уксусной кислоты (ацетил-КоА) – CH3-CO-SKoA. Например, при окислении пальмитиновой кислоты (C16) образуется 8 молекул CH3-CO-SKoA:

Последовательность реакции окисления жирной кислоты выглядит следующим образом: в начале жирная кислота активируется с участием HS-коэнзима А, в результате образуется ацил-КоА. В митохондриях ацил-КоА подвергается дегидрированию с участием фермента ацил-КоА-дегидрогеназы, при этом происходит восстановление ФАД в ФАДН2, образуется ненасыщенная активированная жирная кислота:

На следующем этапе происходит присоединение молекулы воды с участием фермента еноилгидратазы, в результате образуется β-гидроксиацил-КоА:

Далее происходит образование кетокислоты в результате дегидрирования β-гидроксиацил-КоА: реакция происходит с участием кофермента НАД, который восстанавливается в НАДН2:

Молекула кетоформы ацил-КоА под влиянием фермента и при наличии одной молекулы HS-KoA разрывается на 2 части: ацетил-КоА и ацил-КоА, который имеет на два атома углерода меньше исходной кислоты:

ацил-КоА ацетил-Коа

Ацетил-КоА подвергается окислению в цикле Кребса, ацил-KoA – снова проходит путь β-окисления, при этом каждый раз цепь укорачивается на 2 атома углерода.

Окисление жирной кислоты, имеющий 2n атомов углерода происходит за n-1 циклов, так как, окисление бутирил-КоА (4C) завершается за один цикл.

Энергетический баланс β-окисления жирных кислот

При каждом цикле образуется ФАДН2, НАДН2 которые в дыхательной цепи дают:

ФАДН2 – 2 молекулы АТФ

НАДН2 – 3 молекулы АТФ.

Окисление 1 молекулы CH3-CO-KoA в цикле Кребса дает 12 молекул АТФ.

При полном окислении жирной кислоты (n/2)-1 циклов β-окисления, возникает n/2 молекул ацетил-КоА, следовательно, при окислении, например, пальмитиновой кислоты (C16) образуется 130 молекула АТФ.

Источник: studopedia.ru

Обмен жиров (липидов) в организме человека

Жировой (липидный) обмен в организме человека состоит из трёх этапов

1. Переваривание и всасывание жиров в желудке и кишечнике

2. Промежуточный обмен жиров в организме

3. Выделение жиров и продуктов их обмена из организма.

Жиры входят в состав большой группы органических соединений – липиды, поэтому понятие “жировой обмен веществ” и “липидный обмен веществ” являются синонимы.

В организм взрослого человека в сутки поступает около 70 грамм жиров животного и растительного происхождения. В полости рта расщепление жиров не происходит, так как слюна не содержит соответствующих ферментов. Частичное расщепление жиров на составляющие (глицерин, жирные кислоты) начинается в желудке, но этот процесс идёт медленно вот по каким причинам:

1. в желудочном соке взрослого человека активность фермента (липаза) для расщепления жиров очень невысокая,

2. кислотно – щелочной баланс в желудке не оптимальный для действия этого фермента,

3. в желудке отсутствуют условия для эмульгирования (расщепление на мелкие капельки) жиров, а липаза активно расщепляет жиры только в составе жировой эмульсии.

Поэтому у взрослого человека большая часть жиров проходит желудок без существенных изменений.

В отличие от взрослых у детей расщепление жиров в желудке происходит намного активнее.

Основная часть пищевых липидов подвергается расщеплению в верхнем отделе тонкого кишечника, под действием поджелудочного сока.

Успешное расщепление жиров возможно, если они предварительно распадаются на мелкие капельки. Это происходит под действием желчных кислот попадающих в двенадцатипёрстную кишку с желчью. В результате эмульгирования резко увеличивается поверхность жиров, что облегчает взаимодействие их с липазой.

Всасывание жиров и других липидов происходит в тонком кишечнике. Вместе с продуктами расщепления жиров в организм попадают жирорастворимые кислоты (A, D, E, K).

Синтез жиров специфичных для данного организма, происходит в клетках стенки кишечника. В дальнейшем вновь созданные жиры попадают в лимфатическую систему, а затем уже в кровь. Максимальное содержание жиров в плазме крови происходит на период между 4 – 6 часов после приёма жирной пищи. Через 10 – 12 часов концентрация жира приходит в норму.

Активное участие в жировом обмене принимает печень. В печени часть вновь образованных жиров окисляется с образованием энергии необходимой для жизнедеятельности организма. Другая часть жиров превращается в форму удобную для транспортировки, и поступают в кровь. Таким образом, за сутки переносится от 25 до 50 грамм жиров. Жиры, которые организм не использует сразу, с током крови попадают в жировые клетки, где откладываются про запас. Эти соединения могут использоваться при голодании, физической нагрузке и так далее.

Жиры являются важным источником энергии для нашего организма. При кратковременных и внезапных нагрузках сначала используется энергия гликогена, который находиться в мышцах. Если нагрузка на организм не прекращается, то начинается расщепление жиров.

Отсюда необходимо сделать вывод, если вы хотите избавиться от лишних килограмм с помощью физических нагрузок, необходимо чтобы эти нагрузки были достаточно длительными как минимум 30 – 40 минут.

Обмен жиров очень тесно связан с обменом углеводов. При избытке углеводов в организме, обмен жиров замедляется, и работа идёт только в направлении синтеза новых жиров и откладыванию их про запас. При недостатке в пище углеводов наоборот активизируется расщепление жиров из жирового запаса. Отсюда можно сделать вывод, что питание для сброса веса должно ограничивать (в разумных пределах) не только употребления жиров, но и углеводов.

Большинство жиров, которые мы употребляем с пищей, используется нашим организмом или остаются про запас. В нормальном состоянии только 5% жиров выводится из нашего организма, это осуществляется при помощи сальных и потовых желёз.

Регуляция обмена жиров

Регуляция жирового обмена в организме происходит под руководством центральной нервной системы. Очень сильное влияние на жировой обмен оказывают наши эмоции. Под действием различных сильных эмоций в кровь поступают вещества, которые активизируют или замедляют жировой обмен веществ в организме. По этим причинам надо принимать пищу в спокойном состоянии сознания.

Нарушение жирового обмена может произойти при регулярном недостатке в пище витаминов А и В.

Физико-химические свойства жира в организме человека зависит от вида жира поступающего с пищей. Например, если у человека основным источника жира являются растительные масла (кукурузное, оливковое, подсолнечное) то и жир в организме будет более жидкой консистенции. Если же в пище человека преобладает жиры животного происхождения (бараний, свиной жир) то и в организме будет откладываться жиры более похожие на животные жир (твёрдой консистенции с высокой температурой плавления). Этому факту есть экспериментальное подтверждения.

Как вывести трансжирные кислоты из организма

Одна из важнейших задач, с которой сталкивается современный человек – как очистить собственный организм от шлаков и ядов накопившихся «благодаря» некачественному ежедневному питанию. Весомую роль в загрязнении организма играют трансжиры которые обильно поступают с ежедневной пищей и со временем сильно угнетают работу внутренних органов.

В основном трансжирные кислоты выводятся из организма благодаря способностям клеток обновляться. Одни клетки отмирают, на их место появляются новые. Если в организме существуют клетки, мембраны которых состоят из трансжирных кислот, то после того, как они отомрут, на их место могут появиться новые клетки, мембраны которых состоят из качественных жирных кислот. Так происходит, если человек исключил из рациона продукты, содержащие трансжирные кислоты.

Чтобы в мембраны клеток проникало как можно меньше трансжирных кислот, вам нужно увеличить количество ежедневно потребляемых Омега – 3 жирных кислот. Потребляя продукты питания, содержащие такие масла и жиры, вы сможете достичь того, что мембраны нервных клеток будут иметь правильную структуру, что положительно скажется на работе головного мозга и нервной системы.

Надо помнить о том, что в процессе тепловой обработки жиры могут разлагаться с образованием раздражающих и вредных веществ. Перегревание жиров снижает их пищевую и биологическую ценность.

Дополнительные статьи с полезной информацией

Недостаток жиров в пище ощутимо подрывает здоровье человека, а если же в рационе присутствуют полезные жиры, то человек существенно облегчает себе жизнь увеличивая физическую и умственную работоспособность. Читать далее.

Ожирение в последнее время получает всё более широкое распространения среди населения планеты, и данное заболевание требует длительного и системного лечения. Читать далее.

Источник: www.zdorow.dn.ua

Добавить комментарий

Adblock
detector
Делимся с друзьями и коллегами