Обмен углеводов липидов и аминокислот

Взаимосвязь обмена углеводов и аминокислот

Атомы углерода глюкозы и других моносахаридов могут быть использованыдля синтеза большинства заменимых аминокислот.

Промежуточный метаболит расщепления глюкозы — 3 фосфоглицериновая кислота связана с синтезом серина, глицина и цистеина; из пирувата может образоваться аланин; через оксалоацетат идет синтез аспарагина и аспартата; чрез 2-оксоглутарат – пролина, глутамина, глутамата.

Лишь углеродный скелет тирозина не образуется в этой системе. Разумеется, для образования аминокислот необходим источник аминного азота и SH-групп (для синтеза цистеина).

В то же время в условиях дефицита углеводов в пище углеродные скелеты аминокислот могут широко использоваться для глюконеогенеза.

Узловыми соединениями, связывающими метаболические пути обмена углеводов и обмена аминокислот являются 3‑фосфоглицериновая кислота, фосфоенолпируват, пируват и соединения цикла Кребса.

Взаимосвязь обмена углеводов и липидов

Углеводы в ходе их переработки в метаболической сети могут превращаться в жиры.

Узловыми метаболитами, обеспечивающими взаимодействие процессов окислительного расщепления глюкозы и процессов синтеза липидов, являются 3‑фосфоглицериновый альдегид и фосфодигидроксиацетон, 3-фосфоглицериновая кислота, пируват и ацетил-КоА.

Использование липидов для синтеза глюкозы в организме человека крайне ограничено. Лишь остаткиглицероланейтральных жиров и глицерофосфолипидов могут быть использованы в глюконеогенезе.

Взаимосвязь обмена аминокислот и липидов

При использовании аминокислот для синтеза липидов возможны два варианта перехода их углеродного скелета в исходный субстрат для синтеза высших жирных кислот — ацетил-КоА.

Ø При первом варианте при расщеплении аминокислот образуется пируват, который после декарбоксилирования переходит в ацетил‑КоА. Пируват образуется или непосредственно из углеродных скелетов аминокислот, что характерно для треонина, цистеина, серина, аланина, глицина, или же из аминокислот вначале образуются промежуточные продукты цикла Кребса, превращающиеся в оксалоацетат, который после декарбоксилирования дает пируват. Этим путем идет образование пирувата из глутамата, глутамина, аргинина, гистидина и ряда других аминокислот.

Ø При втором варианте ацетил-КоА образуется или непосредственно при окислительном расщеплении углеродного скелета аминокислоты, или через ацетоацетат, который в ходе тиолазной реакции распадается на две молекулы ацетил-КоА. По этому варианту идет расщепление лейцина, лизина и части углеродных скелетов фенилаланина и тирозина.

Поскольку все аминокислоты, при расщеплении которых образуются пируват или промежуточные продукты цикла Кребса могут участвовать в глюконеогенезе, их углеродные скелеты могут быть использованы для образования 3-фосфоглицеринового альдегида или фосфодигидроксиацетона — исходных соединений для синтеза 3-фосфоглицерола и далее триацилглицеринов.

Углеродные скелеты любой из аминокислот в принципе могут быть использованы для синтеза соединений стероидный природы, поскольку синтез стероидов в клетках идет из ацетил-КоА.

Узловыми метаболитами, обеспечивающими взаимосвязь обмена аминокислот с обменом липидов, являются промежуточные соединения цикла Кребса, пируват, ацетил-КоА, 3-фосфоглицериновая кислота, 3-фосфоглицериновый альдегид и фосфодигидроксиацетон.

Для синтеза углеродного скелета заменимых аминокислот может использоваться остаток глицерола триглицеридов или глицерофосфолипидов, однако в количественном отношении этот источник атомов углерода может иметь крайне ограниченное значение лишь в отсутствии углеводов.

Однако такой синтез некоторых заменимых аминокислот с использованием атомов углерода ацетил-КоА связан с расходованием оксалоацетата, а, следовательно, со снижением содержания в клетке промежуточных продуктов цикла Кребса, что для клетки крайне невыгодно.

Межорганные метаболические взаимосвязи

Метаболизм отдельных органов и тканей в рамках целостного организма также представляет собой высокоинтегрированную систему. В качестве примера межорганных метаболических взаимосвязей можно привести следующие:

Ø Синтез креатина начинается в почках, где из глицина и аргинина образуется промежуточный продукт синтеза гликоциамин. Гликоциамин с током крови поступает из почек в печень, где при участии S-аденозилметионина подвергается метилированию, превращаясь в креатин. Далее креатин поступает с током крови в клетки различных органов, например, клетки мозга или мышц, где и выполняет свою функцию, превращаясь в резервный макроэрг — креатинфосфат.

Ø При интенсивной мышечной работе в миоцитах идет распад гликогена и глюкозы с образованием лактата. Лактат из миоцитов выходит в кровь и с током крови поступает в печень.гепатоцитах часть лактата окисляется до конечных продуктов (СО2 и Н2О), остальной лактат используется для глюконеогенеза. Энергия, необходимая для глюконеогенеза, поставляется за счет окисления лактата.

Синтезированная в гепатоцитах глюкоза поступает в кровь, переносится с током крови в мышцы, где расщепляется с выделением энергии, используемой для мышечного сокращения.

Возникает своеобразный цикл взаимопревращения глюкозы и лактата, известный под названием цикла Кори. В ходе функционирования этого цикла, во-первых, происходит утилизация наработанного в мышцах лактата, во-вторых, в энергообеспечении мышечной деятельности принимает участие печень, поскольку энергия, затраченная гепатоцитами на синтез глюкозы из лактата затем выделяется при расщеплении глюкозы в миоциотах.

Ø При работе мышц образуется токсичный для клеток аммиак. Вынос и обезвреживание образовавшегося аммиака осуществляется в ходе так называемого глюкозо-аланинового цикла. В миоцитах образовавшийся аммиак используется для образования аланина из пирувата. Пируват образуется при расщеплении глюкозы и превращается в аланин в ходе трансреаминирования. Аланин поступает в кровь, доставляется в гепатоциты и там подвергается дезаминированию с образованием аммиака и пирувата. Аммиак превращается в мочевину в ходе известного защитного синтеза. Пируват же частично окисляется до конечных продуктов, а частично превращается в гепатоцитах в ходе глюконеогенеза в глюкозу, откуда с током крови глюкоза поступает в миоциты и, окисляясь, служит источником энергии для работы мышц. В ходе этого окисления вновь образуется пируват.

Читайте также:  Омега 3 холестерин отзывы

Подобного рода примеров межорганных метаболических связей можно привести множество. Эта многочисленность межорганных метаболических связей, наряду с интеграцией метаболических путей превращений углеводов, липидов и аминокислот, в полной мере подтверждает то, что обмен веществ в организме представляет собой единую высокоинтегрированную сеть метаболических процессов, протекающих в клетках различных органов и тканей.

Источник: mylektsii.ru

Взаимосвязь обмена углеводов, липидов, аминокислот (схема). Гормональная регуляция. Роль инсулина, глюкагона, адреналина

СВЯЗЬ МЕЖДУ ОБМЕНОМ БЕЛКОВ И УГЛЕВОДОВ

В процессе распада углеводов образуются кетокислоты, которые могут подвергаться аминированию или переаминированию и дать соответствующие a-аминокислоты — структурные элементы белков. Например, путем аминирования или переаминирования пировиноградная кислота, являющаяся продуктом распада углеводов, может превратиться в аминокислоту -аланин. Кроме того, пировиноградная кислота в результате дальнейших превращений дает щавелевоуксусную (СООН—СН2—СО—СООН) и a-кетоглютаровую (СООН—СН2—СН2—СО—СООН) кислоты, из которых путем реакции аминирования и переаминирования соответственно образуются аспарагиновая и глютаминовая аминокислоты.

И наоборот, углеводы в животном организме могут синтезироваться из продуктов окисления белков. Углеводы образуются из тех аминокислот, которые при своем дезаминировании превращаются в кетокислоты.

СВЯЗЬ МЕЖДУ ОБМЕНОМ УГЛЕВОДОВ И ЖИРОВ

Единство в обмене углеводов и жиров доказывается возникновением общих промежуточных продуктов распада. При распаде углеводов образуется пировиноградная кислота, а из нее -активная уксусная кислота -ацетил-КоА, который может быть использован в синтезе жирных кислот. Последние при своем распаде дают ацетил-КоА. Для синтеза нейтрального жира необходим кроме жирных кислот и глицерин. Глицерин также может синтезироваться из продуктов распада углеводов, а именно, из фосфоглицеринового альдегида и фосфодиоксиацетона. И наоборот, при распаде глицерина могут образовываться фосфотриозы.

СВЯЗЬ МЕЖДУ ОБМЕНОМ БЕЛКОВ И ЖИРОВ

Многие заменимые аминокислоты могут синтезироваться из промежуточных продуктов расщепления жиров. Возникающий при распаде жирных кислот цетил-КоА вступает в конденсацию с щавелевоуксусной кислотой и через цикл трикарбоновых кислот приводит к образованию a-кетоглютаровой кислоты. Кетоглютаровая кислота в результате аминирования или переаминирования переходит в глютаминовую. Глицерин, входящий в состав нейтральногo жира, окисляется в глицериновую кислоту и в дальнейшем превращается в пировиноградную, а последняя используется для синтеза заменимых аминокислот.

Использование белков для синтеза жира осуществляется через образование ацетил-КоА.

Далее ацетил-КоА может быть использован для синтеза жирных кислот. Глицерин образуется лишь за счет тех аминокислот, которые способны превращаться в пировиноградную кислоту.

Действие инсулина на обменные процессы в организме многогранно. Исключительно важная роль принадлежит инсулину в регуляции обмена углеводов, что достигается разными путями: усилением транспорта глюкозы из крови в ткани за счет повышения проницаемости клеточных мембран, изменением активности гексокиназы и других ферментов углеводного обмена. Экзогенное введение инсулина нормальным животным вызывает усиление использования глюкозы печенью, мышцами, в результате чего уровень глюкозы в крови снижается (гипогликемия)

Большое значение имеет инсулин и в регуляции биосинтетических процессов. Он стимулирует биосинтез таких жизненно важных биополимфов, как нуклеиновые кислоты и белки.

Адреналин влияет на многие обменные процессы. Он повышает концентрации глюкозы и молочной кислоты в крови (гл. 6). Активация а2-адреноре-цепторов приводит к торможению выработки инсулина, а β2-адренорецепторов — наоборот; при действии адреналина преобладает тормозный компонент. Действуя на P-адренорецепторы α-клеток островков поджелудочной железы, адреналин стимулирует секрецию глюкагона. Он подавляет также захват глюкозы тканями, по меньшей мере частично — за счет торможения выработки инсулина, но также, возможно, за счет прямого действия на скелетные мышцы. Глюкозурию адреналин вызывает редко. В большинстве тканей и у большинства видов животных адреналин стимулирует глюконеогенез путем активации β-адренорецепторов (гл. 6).

Действуя на бета-адренорецепторы липоцитов, адреналин активирует гормон-чувствительную липазу, что приводит к распаду триглицеридов до глицерина и свободных жирных кислот и повышению уровня последних в крови. Под действием адреналина повышается основной обмен (при использовании обычных терапевтических доз потребление кислорода возрастает на 20—30%). Это обусловлено главным образом усилением распада бурой жировой ткани.

59. Общаяя характеристика витаминов. Классификация. Участие в обмене. Связь с ферментами.

Витамины – это необходимые для нормальной жизнедеятельности низкомолекулярные органические соединения, синтез которых в организме ограничен или отсутствует.

Читайте также:  Диета при повышенном давлении и холестерине

Отличительные признаки витаминов:

1) витамины не выполняют пластических функций;

2) витамины не играют энергетической роли (т.е. не используются как источник энергии);

3) витамины не синтезируются в организме или синтезируются в недостаточных количествах;

4) дефицит витаминов вызывает специфические нарушения обмена веществ с характерными клиническими проявлениями;

5) выполняют специфические функции, которые невозможно заменить другими органическими соединениями;

6) витамины необходимы в миллиграммах или микрограммах в сутки (!).

Источник: mydocx.ru

Обмен углеводов липидов и аминокислот

Биохимия питания

В состав полноценного рациона должны входить вещества пяти классов: углеводы, липиды, белки, витамины, неорганические вещества и микроэлементы. Пищевые вещества могут быть заменимыми и незаменимыми. Заменимые могут образовываться в организме из других веществ. Незаменимые – не синтезируются из других веществ и должны поступать с пищей в готовом виде. Для нормального питания человек должен получать с пищей около 40 различных незаменимых веществ: 10 аминокислот, 13 витаминов, 15 или более неорганических элементов (в виде растворимых солей) и одну или несколько полиненасыщенных жирных кислот.

Белки

Белки сами по себе не являются незаменимыми компонентами рациона человека. Для нормального питания необходимы лишь содержащиеся в них незаменимые аминокислоты. Для взрослых людей незаменимыми являются 9 аминокислот (Val, Leu, Ile, Thr, Lys, Met, Phe, Trp, His). Новорожденным и растущим детям необходима еще десятая аминокислота – Arg (у взрослых Arg образуется в достаточных количествах в печени в процессе синтеза мочевины).

Ежедневно молодым мужчинам рекомендуется потреблять 56 г белков (из расчета 800 мг/кг массы тела). При этом подразумевается, что в пищу входят самые разнообразные белки растительного и животного происхождения. По крайней мере 12 из 56 г белка должны приходиться на долю незаменимых аминокислот. Качество белка (пищевая ценность) зависит от двух факторов: 1) от сбалансированности его аминокислотного состава и 2) от его усвояемости. Белки значительно различаются по аминокислотному составу. Некоторые из них (белки яиц, молока, говядины) содержат полный набор аминокислот в оптимальных соотношениях; другие могут не содержать одной или нескольких незаменимых аминокислот. Например, кукуруза характеризуется дефицитом Trp и Lys, пшеница – дефицитом Lys, некоторые бобы – дефицитом Met. Кроме того растительные белки не могут полностью перевариваться, т.к. белковая часть зерен защищена состоящей из целлюлозы и других полисахаридов оболочкой, которая не гидролизуется пищеварительными ферментами. Поэтому для удовлетворения потребности в белке его поступление в организм должно быть увеличено.

Липиды

На долю триацилглицеролов (ТАГ) приходится

98% общего количества липидов в пище, остальные 2% составляют фосфолипиды, холестерин и его эфиры.

Хотя липиды нередко обеспечивают значительную часть суточной потребности (до 40% в развитых странах) в энергии, это не является их основной функцией. Пищевые липиды повышают вкусовые качества пищи, обеспечивают состояние насыщения, действуют как пищевые растворители для жирорастворимых витаминов и служат источником незаменимых полиненасыщенных жирных кислот, синтезировать которые организм не способен.

Углеводы

В связи с тем, что продукты, богатые углеводами, более доступны, чем продукты, содержащие большие количества белков или жиров, именно они составляют основную часть продуктов питания в большинстве стран. Четыре пятых населения земного шара питаются в основном растительной пищей, в которой на долю углеводов приходится от 70 до 90% общей калорийности. В развитых странах на долю углеводов приходится

45% калорийности суточного рациона. В США студенты-мужчины потребляют с пищей

400 г углеводов в сутки.

В развитых странах более 40% потребляемых углеводов составляют сахароза, глюкоза, фруктоза и другие очищенные сахара, что обусловлено доступностью и дешевизной сахарозы в этих странах. Оставшиеся 60% приходятся на долю крахмала. В менее развитых странах сахарозу употребляют в пищу в очень небольших количествах, в основном в качестве углеводов там используют крахмал. Возрастание удельного веса сахарозы в углеводной пище имеет негативную сторону, поскольку сахароза и другие сахара оказывают неблагоприятное воздействие на зубы.

Пищевые волокна

Пищевые волокна – это компоненты стенки растительных клеток, которые не расщепляются ферментами желудочно-кишечного тракта человека.

У людей богатая волокнами диета способствует задержке воды при прохождении пищи по кишечнику и формированию объемных мягких фекалий. Такая диета снижает вероятность возникновения рака толстой кишки, сердечно-сосудистых заболеваний и сахарного диабета.

Волокна с небольшой растворимостью (целлюлоза, лигнин), содержащиеся в пшеничных отрубях, благотворно влияют на функцию толстой кишки, тогда как более растворимые волокна (смолы, пектины), присутствующие в овощах и фруктах, снижают уровень холестерина в крови, замедляют всасывание и потому снижают подъем уровня глюкозы в крови после приема пищи. Этот эффект особенно благоприятен для больных сахарным диабетом.

Читайте также:  Таблетки от повышенного холестерина роксера

Взаимосвязь обмена углеводов, липидов и аминокислот

Метаболические пути углеводов, жиров и аминокислот часто переплетаются. Взаимосвязь обмена этих классов веществ проявляется в наличии общего для них пути катаболизма и в возможности их взаимопревращений.

Возможностью взаимопревращений объясняется частичная взаимозаменяемость углеводов, липидов и аминокислот в питании. С этим же связана неэффективность попыток лечения ожирения безжировой диетой.

Следует отметить необратимость превращения пирувата и аминокислот в ацетил-КоА.

Источник: studopedia.ru

Печень перекрещивает метаболизм углеводов, липидов и белков

Печень, являясь центральным органом метаболизма, участвует в поддержании метаболического гомеостаза и способна осуществлять взаимодействие реакций обмена белков, жиров и углеводов.

Местами «соединения» обмена углеводов и белков является пировиноградная кислота, щавелевоуксусная и α-кетоглутаровая кислоты из цикла трикарбоновых кислот, способных в реакциях трансаминирования превращаться, соответственно, в аланин, аспартат и глутамат. Аналогично протекает процесс превращения аминокислот в кетокислоты.

С обменом липидов углеводы связаны еще более тесно:

  • образуемые в пентозофосфатном пути молекулы НАДФН используются для синтеза жирных кислот и холестерола,
  • глицеральдегидфосфат , также образуемый в пентозофосфатном пути, включается в гликолиз и превращается в диоксиацетонфосфат,
  • глицерол-3-фосфат , образуемый из диоксиацетонфосфата гликолиза, направляется для синтеза триацилглицеролов. Также для этой цели может быть использован глицеральдегид-3-фосфат, синтезированный в этапе структурных перестроек пентозофосфатного пути,
  • «глюкозный» и «аминокислотный» ацетил-SКоА способен участвовать в синтезе жирных кислот и холестерола.

Взаимосвязь обмена белков, жиров и углеводов

Углеводный обмен

В гепатоцитах активно протекают процессы углеводного обмена. Благодаря синтезу и распаду гликогена печень поддерживает концентрацию глюкозы в крови. Активный синтез гликогена происходит после приема пищи, когда концентрация глюкозы в крови воротной вены достигает 20 ммоль/л. Запасы гликогена в печени составляют от 30 до 100 г. При кратковременном голодании происходит гликогенолиз, в случае длительного голодания основным источником глюкозы крови является глюконеогенез из аминокислот и глицерина.

Печень осуществляет взаимопревращение сахаров, т.е. превращение гексоз (фруктозы, галактозы) в глюкозу.

Активные реакции пентозофосфатного пути обеспечивают наработку НАДФН, необходимого для микросомального окисления и синтеза жирных кислот и холестерола из глюкозы.

Липидный обмен

Если во время приема пищи в печень поступает избыток глюкозы, который не используется для синтеза гликогена и других синтезов, то она превращается в липиды – холестерол и триацилглицеролы. Поскольку запасать ТАГ печень не может, то их удаление происходит при помощи липопротеинов очень низкой плотности (ЛПОНП). Холестерол используется, в первую очередь, для синтеза желчных кислот, также он включается в состав липопротеинов низкой плотности (ЛПНП) и ЛПОНП.

При определенных условиях – голодание, длительная мышечная нагрузка, сахарный диабет I типа, богатая жирами диета – в печени активируется синтез кетоновых тел, используемых большинством тканей как альтернативный источник энергии.

Белковый обмен

Больше половины синтезируемого за сутки в организме белка приходится на печень. Скорость обновления всех белков печени составляет 7 суток, тогда как в других органах эта величина соответствует 17 суткам и более. К ним относятся не только белки собственно гепатоцитов, но и идущие на «экспорт», составляющие понятие «белки крови» – альбумины, многие глобулины, ферменты крови, а также фибриноген и факторы свертывания крови.

Аминокислоты подвергаются катаболическим реакциям с трансаминированием и дезаминированием, декарбоксилированию с образованием биогенных аминов. Происходят реакции синтеза холина и креатина благодаря переносу метильной группы от аденозилметионина. В печени идет утилизация избыточного азота и включение его в состав мочевины.

Реакции синтеза мочевины теснейшим образом связаны с циклом трикарбоновых кислот.

Тесное взаимодействие синтеза мочевины и ЦТК

Пигментный обмен

Участие печени в пигментном обмене заключается в превращении гидрофобного билирубина в гидрофильную форму (прямой билирубин) и секреция его в желчь.

К пигментному обмену можно отнести и обмен железа, поскольку железо входит в состав многочисленных гемопротеинов по всему организму. В гепатоцитах находится белок ферритин, играющий роль депо железа, и синтезируется гепсидин, регулирующий всасывание железа в ЖКТ.

Оценка метаболической функции

В клинической практике существуют приемы оценки той или иной функции:

Участие в углеводном обмене оценивается:

  • по концентрации глюкозы крови,
  • по крутизне кривой теста толерантности к глюкозе,
  • по «сахарной» кривой после нагрузки галактозой,
  • по величине гипергликемии после введения гормонов (например, проба с адреналином).

Роль в липидном обмене рассматривается:

  • по концентрации в крови триацилглицеролов, холестерола, ЛПОНП, ЛПНП, ЛПВП,
  • по коэффициенту атерогенности.

Белковый обмен оценивается:

  • по концентрации общего белка и его фракций в сыворотке крови,
  • по показателям коагулограммы,
  • по уровню мочевины в крови и моче,
  • по активности ферментов АСТ и АЛТ, ЛДГ-4,5, щелочной фосфатазы, глутаматдегидрогеназы.

Пигментный обмен оценивается:

  • по концентрации общего и прямого билирубина в сыворотке крови.

Источник: biokhimija.ru