Сложные липиды мыла

Х и м и я

Биоорганическая химия

Сложные омыляемые липиды.

О названии

Напомним, что большая группа «Омыляемых липидов» подразделяется на две подгруппы:

1. простые омыляемые липиды и

2. сложные омыляемые липиды.

Омыляемыми они называются из-за того, что при гидролизе из них образуются соли высших карбоновых кислот, т.е. мыла.

Сложные липиды получили своё название из-за того, что имеют более сложное строение в сравнении с простыми липидами (восками и жирами).

Молекулы простых липидов состоят из атомов углерода (С), водорода (H) и кислорода (О).

В состав молекул сложных липидов, помимо атомов углерода, водорода и кислорода, входят атомы других элементов. Чаще всего это: фосфор (Р), сера (S) и азот (N). При этом структура молекул сложных липидов действительно более сложная, чем структура молекул простых липидов.

Классификация сложных липидов.

Сложные липиды часто трудно классифицировать, так как они содержат группировки, позволяющие отнести их к нескольким группам.

Тем не мнее, сложные липиды принято делить на три большие группы:

1. Фосфолипиды
  • Глицерофосфолипиды — Фосфатиды — Фосфатидилсерины — Фосфатидилэтаноламины — Фосфатдилилхолины (лецитины) — Плазмалогены
  • Сфингомиелины
2. Сфинголипиды
  • Сфингомиелины
  • Церамиды
  • Цереброзиды — Галактоцереброзиды — Глюкоцереброзиды.
3. Гликолипиды
  • Цереброзиды
  • Ганглиозиды

Если вы обратили внимание, cфингомиелины входят сразу в две группы (фосфолипидов и cфинголипидов).

А цереброзиды одновременно входят в группы сфинголипидов и гликолипидов.

Это происходит потому, они содержат группировки, позволяющие отнести их к нескольким группам.

Химический состав сложных липидов

Фосфолипиды

Фосфорсодержащие сложные липиды называются фосфолипидами.

Фосфолипиды — это сложные эфиры многоатомных спиртов и высших жирных кислот. В своём составе содержат остаток фосфорной кислоты и соединенную с ней добавочную группу атомов различной химической природы.

К фосфолипидам относятся глицерофосфолипиды и некоторые сфинголипиды (сфингомиелины).

Глицерофосфолипиды – производные L-глицеро-3-фосфата.

Глицеро-3-фосфат – соединение глицерина, в котором атом водорода замещён остатком азотной кислоты.

Цифра 3 означает, что остаток азотной кислоты присоединён к третьему атому углерода в молекуле глицерина.

Глицеро-3-фосфат может существовать в виде двух стереоизомеров (L и D).

Природные глицерофосфолипиды являются производными L-изомера.

Глицерофосфолипиды — главный липидный компонент клеточных мембран.

Среди глицерофосфолипидов наиболее распространены фосфатиды – сложноэфирные производные L- фосфатидовых кислот.

L- фосфатидовые кислоты представляют собой этерефицированный жирными кислотами по спиртовым гидроксильным группам L-глицеро-3-фосфат.

В молекуле L-фосфатидовых кислот остатки жирных кислот образуют эфирные связи с первым и вторым атомами углерода.

Примерами фосфатидов могут служить:

  • Фосфатидилсерины,
  • Фосфатидилэтаноламины,
  • Фосфатилхолины (лецитины).

Всё это соединения, в которых фосфатидовые кислоты этерефицированы по фосфатному гидроксилу серином, этаноламином и холином соответственно.

Плазмолагены – это глицерофосфолипиды, содержащие простую эфирную связь.

Они менее распространены по сравнению со сложноэфирными глицерофосфолипидами.

Плазмолагены содержат остаток винилового спирта, связанный простой эфирной связью с С1 L-глицеро-3-фосфата, как, напрмер, плазмогены с фрагментом этаноламина:

Плазмолагены составляют до 10% от общего количества липидов центральной нервной системы.

Сфинголипиды.

Сфинголипиды – структурные аналоги глицерофосфолипидов, где вместо глицерина используется сфингозин – насыщенный длинноцепочечный двухатомный аминоспирт.

Примером сфинголипидов служат церамиды.

Церамиды — это наиболее простые сфинголипиды. Они содержат только сфингозин, аминогруппа которого ацилирована жирной кислотой, или другими словами, соединена с жирнокислотным ацильным остатком.

АЦИЛИРОВАНИЕ — введение ацильной группы (ацила) RCO (остаток жирной кислоты) в молекулу органического соединения путем замещения атома водорода.

Важную группу сфинголипидов составляют сфингомиелины. В сфингомиелинах гидроксил у С1 ацилирован фосфорилхолиновой группировкой, поэтому их также можно отнести и к фосфолипидам.

Сфингомиелины были впервые обнаружены в нервной ткани.

Гликолипиды

Гликолипиды — соединения, построенные из липидного и углеводного фрагментов, соединенных ковалентной связью.

Типичные представители гликолипидов – цереброзиды и ганглиозиды – сфингосодержащие липиды (их можно поэтому считать сфинголипидами).

В цереброзидах остаток церамида связан с D-галактозой или D-глюкозой.

Ганглиозиды – богатые углеводами сложные липиды, впервые выделеные из серого вещества мозга.

В стуктурном отношении они сходны с цереброзидами, отличаясь тем, что вместо моносахарида они содержат сложный олигосахарид.

Напомним, что олигосахариды представляют собой углеводы, состоящие из нескольких моносахаридных остатков.

Сложные липиды – структурная основа клеточных мембран.

Характерная особенность сложных липидов – бифильность, обусловленная наличием неполярных гидрофобных и высокополярных ионизированных гидрофильных группировок.

В фосфатидилхолинах, например, углеводородные радикалы жирных кислот образуют два неполярных «хвоста», а карбоксильная, фосфатная и холиновые группы – полярную часть.

На границе раздела фаз такие соединения действуют как превосходные эмульгаторы.

В составе биомембран, ограничивающих живые клетки и их внутриклеточные органеллы, липидные компоненты обеспечивают высокое электрическое сопротивление мембраны, её непроницаемость для ионов и полярных молекул и проницаемость для неполярных веществ.

В частности, большинство анестезирующих препаратов отличается хорошей растворимостью в липидах, что позволяет им проникать через мембраны нервных клеток.

В состав клеточных мембран входят в основном белки и липиды, среди которых преобладают фосфолипиды, составляющие 40-90% от общего количества липидов в мембране.

Строение биомембраны интенсивно изучается в настоящее время. В одной из моделей клеточная мембрана рассматривается как липидный биослой. В таком биослое углеводородные хвосты липидов за счёт гидрофобных взаимодействий удерживаются друг возле друга в вытянутом состоянии во внутренней полости, образуя двойной углеводородный слой. Полярные группы липидов располагаются на внешней поверхности бислоя.

Дополнением рассмотренной модели является жидкостно-мозаичная модель биомембраны, предполагающая, что мембранные белки встроены в жидкую липидную бислойную основу таким образом, что их гидрофобные участки погружены во внутреннюю полость мембраны, а ионизированные остатки аминокислот находятся на её поверхности.

Источник: xn—-7sbb4aandjwsmn3a8g6b.xn--p1ai

Сложные липиды мыла

Глава II. ЛИПИДЫ

§ 4. КЛАССИФИКАЦИЯ И ФУНКЦИИ ЛИПИДОВ

Липиды представляют собой неоднородную группу химических соединений, нерастворимых в воде, но хорошо растворимых в неполярных органических растворителях: хлороформе, эфире, ацетоне, бензоле и др., т.е. общим их свойством является гидрофобность (гидро – вода, фобия – боязнь). Из-за большого разнообразия липидов дать более точное определение им невозможно. Липиды в большинстве случаев являются сложными эфирами жирных кислот и какого-либо спирта. Выделяют следующие классы липидов: триацилглицерины, или жиры, фосфолипиды, гликолипиды, стероиды, воска, терпены. Различают две категории липидов – омыляемые и неомыляемые. К омыляемым относятся вещества, содержащие сложноэфирную связь (воска, триацилглицерины, фосфолипиды и др.). К неомыляемым относятся стероиды, терпены.

Читайте также:  Какая норма холестерина для 46 лет

Триацилглицерины, или жиры

Триацилглицерины являются сложными эфирами трехатомного спирта глицерина

и жирных (высших карбоновых) кислот. Общая формула жирных кислот имеет вид: R-COOH, где R – углеводородный радикал. Природные жирные кислоты содержат от 4 до 24 атомов углерода. В качестве примера приведем формулу одной из наиболее распространенной в жирах стеариновой кислоты:

В общем виде молекулу триацилгицерина можно записать так:

Если в состав триациоглицерина входят остатки различных кислот (R1 R2 R3), то центральный атом углерода в остатке глицерина становится хиральным.

Триацилглицерины неполярны и вследствие этого практически нерастворимы в воде. Основная функция триацилглицеринов – запасание энергии. При окислении1 гжира выделяется 39 кДж энергии. Триацилглицерины накапливаются в жировой ткани, которая, кроме депонирования жира, выполняет термоизолирующую функцию и защищает органы от механических повреждений. Более подробную информацию о жирах и жирных кислотах вы найдете в следующем параграфе.

Интересно знать! Жир, которым заполнен горб верблюда, служит, в первую очередь, не источником энергии, а источником воды, образующейся при его окислении.

Фосфолипиды содержат гидрофобную и гидрофильную области и поэтому обладают амфифильнымы свойствами, т.е. они способны растворяться в неполярных растворителях и образовывать стойкие эмульсии с водой.

Фосфолипиды в зависимости от наличия в их составе спиртов глицерина и сфингозина делятся на глицерофосфолипиды и сфингофосфолипиды.

В основе строения молекулы глицерофосфолипидов лежит фосфатидная кислота, образованная глицерином, двумя жирными и фосфорной кислотами:

В молекулах глицерофосфолипидов к фосфатидной кислоте сложноэфирной связью присоединена НО-содержащая полярная молекула. Формулу глицерофосфолипидов можно представить так:

где Х – остаток НО-содержащей полярной молекулы (полярная группировка). Названия фосфолипидов образуются в зависимости от наличия в их составе той или иной полярной группировки. Глицерофосфолипиды, содержащие в качестве полярной группировки остаток этаноламина,

носят название фосфатидилэтаноламинов, остаток холина

Формула фосфатидилэтаноламина выглядит так:

Глицерофосфолипиды отличаются друг от друга не только полярными группами, но и остатками жирных кислот. В их состав входят как насыщенные (состоящие обычно из 16 – 18 атомов углерода), так и ненасыщенные (содержащие чаще 16 – 18 атомов углерода и 1 – 4 двойные связи) жирные кислоты.

Сфингофосфолипиды по составу сходны с глицерофосфолипидами, но вместо глицерина содержат аминоспирт сфингозин:

Наиболее распространенными сфингофосфолипидами являются сфингомиелины. Они образованы сфингозином, холином, жирной кислотой и фосфорной кислотой:

Молекулы как глицерофосфолипидов, так и сфингофосфолипидов состоят из полярной головы (образована фосфорной кислотой и полярной группировкой) и двух углеводородных неполярных хвостов (рис.1). У глицерофосфолипидов оба неполярных хвоста являются радикалами жирных кислот, у сфингофосфолипидов – один хвост является радикалом жирной кислоты, другой – углеводородной цепочкой спирта сфингазина.

Рис. 1. Схематическое изображение молекулы фосфолипида.

При встряхивании в воде фосфолипиды спонтанно формируют мицеллы, в которых неполярные хвосты собираются внутри частицы, а полярные головы располагаются на ее поверхности, взаимодействуя с молекулами воды (рис. 2а). Фосфолипиды способны образовывать также бислои (рис. 2б) и липосомы – замкнутые пузырьки, окруженные непрерывным бислоем (рис. 2в).

Рис. 2. Структуры, образуемые фосфолипидами.

Способность фосфолипидов, образовывать бислой, лежит в основе формирования клеточных мембран.

Гликолипиды

Гликолипиды содержат в своем составе углеводный компонент. К ним относятся гликосфинголипиды, содержащие, кроме углевода спирт, сфингозин и остаток жирной кислоты:

Они так же, как и фосфолипиды, состоят из полярной головы и двух неполярных хвостов. Гликолипиды располагаются на внешнем слое мембраны, являются составной частью рецепторов, обеспечивают взаимодействие клеток. Их особенно много в нервной ткани.

Стероиды

Стероиды являются производными циклопентанпергидрофенантрена (рис. 3). Один из важнейших представителей стероидов – холестерин. В организме он встречается как в свободном состоянии, так и в связанном, образуя сложные эфиры с жирными кислотами (рис. 3). В свободном виде холестерин входит в состав мембран и липопротеинов крови. Сложные эфиры холестерина являются его запасной формой. Холестерин является предшественником всех остальных стероидов: половых гормонов (тестостерон, эстрадиол и др.), гормонов коры надпочечников (кортикостерон и др.), желчных кислот (дезоксихолевая и др.), витамина D (рис. 3).

Интересно знать! В организме взрослого человека содержится около 140 г холестерина, больше всего его находится в нервной ткани и надпочечниках. Ежедневно в организм человека поступает 0,3 – 0,5 г холестерина, а синтезируется – до 1 г.

Воска

Воска – это сложные эфиры, образованные длинноцепочечными жирными кислотами (число атомов углерода 14 – 36) и длинноцепочечными одноатомными спиртами (число атомов углерода 16 – 22). В качестве примера рассмотрим формулу воска, образованного олеиновым спиртом и олеиновой кислотой:

Воска выполняют главным образом защитную функцию, находясь на поверхности листьев, стеблей, плодов, семян они защищают ткани от высыхания и проникновения микробов. Они покрывают шерсть и перья животных и птиц, предохраняя их от намокания. Пчелиный воск служит строительным материалом для пчел при создании сот. У планктона воск служит основной формой запасания энергии.

Терпены

В основе терпеновых соединений лежат изопреновые остатки:

К терпенам относятся эфирные масла, смоляные кислоты, каучук, каротины, витамин А, сквален. В качестве примера приведем формулу сквалена:

Сквален является основным компонентом секрета сальных желез.

Источник: ebooks.grsu.by

Омыляемые липиды

Нейтральные жиры включают в себя сложные эфиры глицерина и жирных кислот. В организме играют роль структурного компонента клеток или запасного вещества («жировое депо»). В природе, за редкими исключениями, встречаются только полные эфиры глицерина- триацилглицерины (ТАГ). Твердые ТАГ называют жирами, жидкие — маслами. Простые ТАГ содержат остатки одинаковых кислот (тристеарин, триолеин), смешанные — различных.

Читайте также:  Холестерин норма в таблице

Природные жиры и масла представляют собой смеси смешанных ТАГ. Их количественной характеристикой служит массовая доля отдельных кислот, а также аналитические константы — кислотное число, йодное число, число омыления, эфирное число (жировые числа).

Кислотное число — количество мг КОН, необходимое для нейтрализации свободных жирных кислот в 1 г жира. Увеличение к.ч. при хранении свидетельствует о происходящем в жире гидролизе, т.е. порче жира.

Йодное число — количество граммов йода, связываемое 100 г данного жира. Является количественной мерой ненасыщенности.

Число омыления — количество мг КОН, необходимое для нейтрализации как свободных, так и связанных с глицерином жирных кислот, содержащихся в 1 г жира.

От жирно-кислотного состава зависит ещё одна характеристика жира — температура плавления (табл. 2.2).

При хранении жиры под действием света, кислорода и влаги приобретают неприятный вкус и запах — прогоркают. Во избежание этого добавляют антиоксиданты. Наиболее важный среди них — витамин Е.

Воски — сложные эфиры жирных кислот и высших одноатомных или двухатомных спиртов. Число углеродных атомов у таких спиртов составляет от 16 до 22: цетиловый спирт (С16Н33ОН), мирициловый спирт (С30Н61ОН). Природные воски синтезируются живыми организмами и содержат до 50 % примесей свободных жирных кислот, красящих и душистых веществ. В воде воски нерастворимы, температуры плавления лежат в интервале от 40° до 90° С.

Воски выполняют в организме в основном защитную функцию. Они образуют защитную смазку на коже, шерсти, перьях; покрывают листья, стебли, плоды, семена, а также кутикулу наружного скелета у многих насекомых. Восковой налёт предохраняет от смачивания, высыхания и проникновения микробов. Удаление воскового слоя с поверхности плодов приводит к более быстрой их порче при хранении. Воски также являются главным липидным компонентом многих видов морского планктона. Широкое применение находил ранее содержащийся в черепной полости кашалота спермацет — как основа кремов и мазей. Его главные компоненты — цетилпальмитат и мирицилпальмитат. В настоящее время аналоги спермацета синтезированы искусственно. Овечью шерсть покрывает ланолин, использующийся в косметике. Пчелиный воск сочетает пластичность с кислотоустойчивостью, электро- и водоизоляционными свойствами. В отличие от нейтральных жиров воски более устойчивы к действию света и окислителей.

Молекула фосфолипидов образована остатками глицерина (или заменяющего его спирта сфингозина), жирных кислот, фосфорной кислотой, которая соединена сложноэфирной связью с азотсодержащей полярной группировкой. Фосфолипиды широко распространены в растительных и животных тканях, микроорганизмах, они являются преобладающей формой липидов. В отличие от нейтральных жиров фосфолипиды практически содержатся только в клеточных мембранах, очень редко в небольших количествах обнаруживаются в составе запасных отложений. Особенно велико их содержание в нервной ткани человека и позвоночных животных.

Простейшим глицерофосфолипидом является фосфатидная кислота (R3=H). В тканях организма она содержится в незначительных количествах, но является важным промежуточным соединением в синтезе ТАГ и фосфолипидов.

Наиболее представлены в клетках различных тканей фосфати- дилхолин (лецитин) и фосфатидилэтаноламин (кефалин), у которых роль R3 выполняют аминоспирты: холин HO-CH2-CH2-N + (СН3)3 и этаноламин HO-CH2-CH2-NH2. Эти два глицерофосфолипида метаболически тесно связаны друг с другом. Они являются компонентами большинства биологических мембран.

В тканях находятся и другие глицерофосфолипиды. В фосфати- дилсерине R3 соответствует аминокислоте серину. В фосфатидилино- зите фосфорная кислота этерифицирована шестиатомным спиртом инозитом. Фосфатидилинозиты представляют интерес как возможные предшественники простагландинов.

Сфинголипиды содержат те же компоненты, что и глицерофосфолипиды (жирная кислота, фосфат, R3 — заместитель), но вместо глицерина они включают аминоспирт сфингозин:

Широко распространенный представитель этой группы — сфин- гомиелин. Особенно богата им нервная ткань, в частности, мозг.

Характерной особенностью фосфолипидов является их бифиль- ность. В фосфатидилхолинах, например, радикалы жирных кислот образуют два неполярных «хвоста», а фосфатная и холиновая группа — полярную «голову».

На границе раздела фаз такие соединения действуют как детергенты или ПАВ. О наличии фосфолипидов в биологических объектах можно судить по содержанию фосфора (реакция с молибдатом аммония) после минерализации образца. Основная часть липидов в мембранах представлена фосфолипидами, гликолипидами и холестерином. Липиды мембран образуют двухслойную структуру. Каждый слой состоит из сложных липидов, расположенных таким образом, что неполярные гидрофобные «хвосты» молекул находятся в тесном контакте друг с другом. Так же контактируют гидрофильные части молекул. Все взаимодействия имеют нековалентный характер. Два монослоя ориентируются «хвост к хвосту» так, что образующаяся структура двойного слоя имеет внутреннюю неполярную часть и две полярные поверхности.

Не содержат фосфорную кислоту гликолипиды, они широко представлены в миелиновых оболочках нервов. В состав гликолипидов животных входит сфингозин, жирная кислота и углеводный остаток (чаще D-галактоза):

Ганглиозиды обнаруживаются обычно на внешней поверхности клеточных мембран, особенно в нервных клетках. Они выполняют рецепторные функции. Отмечено распределение цереброзидов и ганг- лиозидов в тканях мозга: в составе белого вещества преобладают це- реброзиды, в составе серого — ганглиозиды.

Сульфолипиды (сулъфатиды) имеют структуру, аналогичную цереброзидам, с той лишь разницей, что у третьего атома углерода галактозы вместо гидроксильной группы — остаток серной кислоты. Сульфатиды обнаружены в миелине.

Неомыляемые липиды

Неомыляемые липиды так названы потому, что они не подвергаются гидролизу. Известны два типа неомыляемых липидов.

Высшие спирты (холестерин, витамины A, D, Е). Холестерин — производное циклопентанпергидрофенантрена (стерана). В кристаллическом виде — белое, оптически активное вещество, практически нерастворимое в воде. Холестерин — компонент мембран, исходное соединение для синтеза стероидных гормонов, желчных кислот, витамина D3. В растениях обнаружены фитостерины.

Высшие углеводороды (терпены). Молекулы построены путем объединения нескольких молекул изопрена. Придают растениям свойственный аромат, служат главными компонентами душистых масел. К терпенам принадлежат каротиноиды и каучук.

Источник: studref.com

Читайте также:  Что надо исключить из рациона при повышенном холестерине

Биохимическая классификация липидов

Люди, которые интересуются своим здоровьем, зачастую изучают строение организма человека и частично анатомию. Это позволяет им более детально понимать, что происходит в их организме при том или ином заболевании. Так люди могут предотвратить множество печальных последствий. Липиды – это одни из соединений, о которых важно знать человеку.

Липиды – это жировые соединения, вещества, принимающие участие в жизненно важных для человека обменных процессах. Классификация липидов позволяет лучше понять их функции и роль в организме. Исследователи и ученые до сих пор не пришли к единому мнению по поводу биохимического состава липидов и их строения. Эти вещества относятся к липидам, им присвоены классификации.

Основные виды липидных соединений – классы липидов

Липидные соединения, вещества, имеют не одинаковые состав и строение, в зависимости от этого их разделяют на разные классы. Существуют таблицы, по которым можно получить полное представление о том, какие группы выделяют, в чем их особенность и различие. Все жировые клетки, имеющие отношения к липидам, делят прежде всего на две такие категории:

Когда соли высокожирных кислот синтезируются путем гидролиза с участием щелочей, возникает омыление. В качестве мыл при этом выступают соли калия и натрия, относящиеся к липидам. Омыляемые липиды – это самая крупная категория. Она также делится на два класса:

  • простые – состоят из атомов кислорода, водорода и углекислого газа;
  • сложные – это просты липиды, которые комбинируются с соединениями фосфора, продуктами распада глицерина или же ненасыщенным сфингозином.

Простые липиды

В эту группу входят жирные кислоты и спиртовые эфиры. Наиболее часто встречающиеся соединения – это холестерин, глицерин и олеиновый спирт. Существуют различные виды глицерина, самым сложным эфирным соединением является триаглицерин – в его составе есть несколько молекул жирных кислот. По своей сути простейшие липиды – это клетки жировых тканей. Так как глицерин является трехатомным спиртом, то он контактирует с жирными кислотами одновременно в трех местах. Исходя из этого, образуются:

  • триаглицериды;
  • диаглицериды;
  • моноглицеридлы.

Теплокровные млекопитающие в своих организмах тоже имеют нейтральные жиры. Но в их составе присутствуют такие кислоты, имеющие повышенную жирность, как стеариновые и пальмитиновые, при этом их объем довольно велик. Нейтральные жиры могут находиться в разных тканях и органах организма. и в зависимости от этого, особенность их состава может различаться. Например, в тканях печени у человека преобладают ненасыщенные кислоты, а вот в клетках под кожей присутствуют жировые клетки другого типа.

Независимо от того, насыщенные кислоты или нет, и тот и другой вид является алифатическим карбоновым. Эти микроэлементы очень важны для строения липидов. Из насыщенных жирных кислот в организме человека преобладают пальмитиновая и стеариновая. Намного меньше обнаруживается лигноцериновая – это сложное вещество, в составе которого есть 24 атома. Примечательно, что у животных не выявляются кислоты, состоящие из менее чем 10 атомов.

Наиболее распространенными являются те соединения ненасыщенных кислоты, которые имеют восемнадцать атомов. Незаменимыми при этом считаются те соединения, в составе которых есть от 1 до 4 двойных связей. Это линолевая, линоеленовая, олеиновая и арахидоновая кислоты.

Простагландины и воски

Эти вещества тоже в большей или меньшей мере обнаруживаются в организме у всех животных. Простагландины – это производные ненасыщенных кислот, которые играют важнейшую роль в обменных процессах млекопитающих. Эти соединения синтезируются всеми клетками, за исключением эритроцитов. Они воздействуют на такие системы и органы человека:

  • сердце и сосуды;
  • метаболические процессы;
  • электролитный обмен;
  • пищеварительная система;
  • органы деторождения.

Воски – еще одна группа, представляющая собой соединения сложных эфиров со спиртами, в цепочке которых есть один или два атома. Количество углеродных частичек в таких элементах может доходить до 22. Воски тверже липидов и потому являются для них своеобразными протекторами. В природе наиболее распространены такие виды подобных соединений, как пчелиный воск, ланолин и воск, покрывающий листья растений.

Классификация сложных липидов

Эта категория представлена соединениями нескольких видов:

Фосфолипиды отличаются сложным строением и биохимической конструкцией. Обязательными в их составе являются азотистые соединения, фосфор, спирты и прочие элементы. Это основной материал в организме для построения биологических клеточных мембран. Эти соединения есть в тканях сердца, головного мозга и печени.

Гликолипиды – следующие категория. Они имеют в своем составе обязательно углеводы и сфингозиновые спирты. Они есть во многих тканях в организме млекопитающих, но больше всего их обнаруживается в нервных оболочках. сульфолипиды считаются одним из подвидов гликолипидов. Главное различие между ними – в особенностях структуры. У гликолипидов галактоза третьего атома углерода замещается остатками серной кислоты.

Классификация по группам неомыляемых липидов

Эта категория намного меньше прошлой. В отличие от предыдущей, эти соединения выделяют только жирные кислоты и не подвержены гидролизации под воздействием щелочных соединений. Делятся неомылямые липиды на два подвида:

  • высшие спирты;
  • высшие углеводороды.

В первую группу входят витамины, которые могут растворяться в воде – это витамины А, Е и Д. также сюда относится известный всем холестерин. Этот элемент ученые нучились выделять из желчных камней еще несколько сотен лет назад. Холестериновые соединения никогда не обнаруживаются в клетках растений. Но зато это вещество есть практически в каждой клетке животных организмов. Это вещество необходимо для нормального функционирования важнейших систем и органов человека: пищеварительной, мочевыделительной, гормональной, печени, желчного пузыря и т.д.

Высшие углеводороды с точки зрения биохимии являются производными изопрена. В основе химического состава этих неомыляемых липидов соединения частиц изопрена. Эти соединения можно обнаружить в клетках растений, особенно много их в душистых сортах. Также сюда относится политерпен или каучук натурального происхождения. Это тоже один из неомыляемых высших углеводородов.

Источник: sosudportal.ru