Синтез липидов углеводов нуклеиновых кислот

Нуклеиновые кислоты, липиды, углеводы

Нуклеиновые кислоты. Содержание нуклеиновых кислот в микробных клетках может колебаться от 3 до 30% сухого вещества, причем на ДНК приходится 3 – 5% , на РНК – 7 – 10% . Количество нуклеиновых кислот широко меняется в зависимости от стадии развития клетки. В период, предшествующий делению клетки, количество ДНК резко возрастает. ДНК входит в состав нуклеоидов бактериальной клетки. Она образует единую гигантскую двухнитчатую молекулу общей длиной до 3 мм с молекулярной массой свыше 109 Да. Кроме того, у бактерий ДНК часто встречается в виде цитоплазматических наследственных элементов (плазмид) различной величины. РНК находится в рибосомах, присутствует в цитоплазме клетки.

ДНК бактерий характеризуется видовой специфичностью. Представители одного вида и близких видов одного и того же рода имеют близкие показатели содержания гуанина и цитози- на. На определении молярного содержания процента гуанина и цитозина основана геносистематика бактерий.

Липиды. Содержание липидов в микробных клетках может колебаться от 1 до 30% . У микробов содержатся различные жирные кислоты – насыщенные (пальмитиновая, стеариновая, капроновая), ненасыщенные (линолевая, дифтериновая). Некоторые бактерии содержат измененные жирные кислоты, присущие только бактериям, – миколовая, лактобациллиновая.

Сложные липиды имеют в своем составе другие группы, например остатки фосфорной кислоты, сульфаты, азотистые основания. Они могут содержать белки (липопротеиды), полисахариды (липополисахариды).

Обычно больше липидов содержится в молодых культурах. Они входят в состав мембран и клеточные стенки микробных клеток.

Липиды выполняют у микроорганизмов различные функции. Они играют роль запасных питательных веществ, участвуют в энергетическом обмене, входят в состав мембран и антигенов клетки, участвуют в обеспечении их проницаемости.

Углеводы. Микробные клетки могут содержать до 20 – 30% углеводов в сухом остатке. Углеводы микроорганизмов представлены моносахаридами и полисахаридами. Моносахариды микробов относятся в основном к триозам, тетрозам, пентозам, гексозам и гепто- зам. Существенную роль у микробов играют дисахариды (мальтоза, сахароза, лактоза).

Полисахариды микроорганизмов состоят из многих моносахаридов, связанных в высокомолекулярные соединения, имеющие молекулярную массу от 10 тыс. до 4 млн Да.

Полисахариды, как и липиды, играют у микробов роль запасных питательных веществ, входя в состав включений гликогена, крахмала; они также участвуют в энергетическом обмене микробной клетки.

Углеводы могут использоваться в организме для синтеза липидов (холестерина), мукополисахаридов, гликопротеидов, нуклеиновых кислот и других органических соединений.

. потому, что вирусная популяция гете-рогенна, а также потому, что состав вирусной частицы в некоторой степени (для липидов и углеводов) определяется
Эти значения длины РНП могут быть окоррелированы с молекулярной массой нуклеиновых кислот, входящих в состав РНП.

составляют липиды, соединенные с углеводами, так называемые гликолипиды; они обеспечивают восприятие раздражения при
£.14. Распад макромолекул (полисахаридов, липидов, белков и нуклеиновых кислот) часто идет по пути, отличному от их синтеза.

Молекулы липидов. составляют липиды, соединенные с углеводами, так называемые гликолипиды; они в нем синтезируются
. путем реакции полимеризации из простых молекул получали более сложные молекулы: белки, липиды, нуклеиновые кислоты и их производные.

Источник: www.bibliotekar.ru

Синтез липидов углеводов нуклеиновых кислот

Липиды имеют очень большое значение в метаболизме клетки. Все липиды – это органические водонерастворимые соединения, присутствующие во всех живых клетках. По своим функциям липиды разделяются на три группы:

– структурные и рецепторные липиды клеточных мембран

– энергетическое «депо» клеток и организмов

– витамины и гормоны «липидной» группы

Основу липидов составляют жирные кислоты (насыщенные и ненасыщенные) и органический спирт – глицерол. Основную массу жирных кислот мы получаем из пищи (животной и растительной). Животные жиры – это смесь насыщенных (40-60%) и ненасыщенных (30-50%) жирных кислот. Растительные жиры наиболее богаты (75-90%) ненасыщенными жирными кислотами и наиболее полезны для нашего организма.

Основная масса жиров используется для энергетического обмена, расщепляясь специальными ферментами – липазами и фосфолипазами. В результате получаются жирные кислоты и глицерин, которые в дальнейшем используются в реакциях гликолиза и цикла Кребса.С точки зрения образования молекул АТФжиры составляют основу энергетического запаса животных и человека.

Читайте также:  Таблетки от холестерина розукард

Эукариотическая клетка получает жиры с пищей, хотя сама может синтезировать большинство жирных кислот (за исключением двух незаменимыхлинолевой и линоленовой). Синтез начинается в цитоплазме клеток с помощью сложного комплекса ферментов и заканчивается в митохондриях или гладком эндоплазматическом ретикулуме.

Исходным продуктом для синтеза большинства липидов (жиров, стероидов, фосфолипидов) служит «универсальная» молекула – ацетил-Коэнзим А (активированная уксусная кислота), являющаяся промежуточным продуктом большинства реакций катаболизма в клетке.

Жиры есть в любой клетке, но особенно много их в специальных жировых клетках – адипоцитах, образующих жировую ткань. Контролируется жировой обмен в организме специальным гормонами гипофиза, а также инсулином и адреналином.

Углеводы (моносахариды, дисахариды, полисахариды) являются важнейшими соединениями для реакций энергетического обмена. В результате распада углеводов клетка получает большую часть энергии и промежуточные соединения для синтеза других органических соединений (белков, жиров, нуклеиновых кислот).

Основную массу сахаров клетка и организм получает извне – из пищи, но может синтезировать глюкозу и гликоген из неуглеводных соединений. Субстратами для разного вида углеводного синтеза выступают молекулы молочной кислоты (лактат) и пировиноградной кислоты (пируват), аминокислоты и глицерин. Эти реакции идут в цитоплазме при участии целого комплекса ферментов – глюкозо-фосфотаз. Для всех реакций синтеза требуется энергия – синтез 1 молекулы глюкозы требует 6 молекул АТФ!

Основной объем собственного синтеза глюкозы протекает в клетках печени и почек, но не идет в сердце, мозге и мышцах (там нет необходимых ферментов). Поэтому нарушения углеводного обмена в первую очередь сказываются на работе этих органов. Углеводный обмен контролируется группой гормонов: гормонами гипофиза, глюкокортикостероидными гормонами надпочечников, инсулином и глюкагоном поджелудочной железы. Нарушения гормонального баланса углеводного обмена приводит к развитию диабета.

Мы кратко рассмотрели основные части пластического обмена. Можно сделать ряд общих выводов:

Источник: studopedia.ru

Пластический обмен

Пластический и Энергетический обмены

Пластический обмен

Пластический обмен — это совокупность реакций синтеза необходимых соединений (белков, углеводов, липидов, нуклеиновых кислот) из веществ, которые попали в клетку, с поглощением энергии.

Биосинтез белков

Растения сами синтезируют все необходимые им аминокислоты, используя азот, аммиак, нитраты. Высшие животные и человек получают незаменимые аминокислоты с пищей. Заменимые аминокислоты животные и грибы синтезируют из азотосодержащих соединений. Биосинтез белка из аминокислот – это сложный многоэтапный процесс, который требует много энергии. Каждая из реакций биосинтеза обеспечивается специфическими ферментами.

Все живые организмы сохраняют наследственную информацию в молекулах нуклеиновых кислот в виде определенной последовательности нуклеотидов. Такая единая система сохранения называется генетическим кодом.

В полипептидной цепи каждый аминокислотный остаток кодируется определенной последовательностью из трех нуклеотидов – триплетом (комбинация из трех нуклеотидов дает возможность кодировать 4 3 = 64 типа аминокислот, то есть 20 основных).

Свойства генетического кода:

1) вырожденность – одну аминокислоту могут кодировать несколько разных триплетов. Большинство основных аминокислот (18 из 20) кодируется несколькими триплетами – от 2 до 6, лишь две (триптофан и метионин) – одним;

2) однозначность – каждый триплет кодирует лишь определенную аминокислоту;

3) универсальность – код единый для всех организмов, существующих на Земле. Одни и те же триплеты кодируют одни и те же аминокислоты разных организмов;

4) неперекрываемость – генетическая информация может считываться лишь одним способом, в одном направлении.

Между генами существуют участки, которые не несут генетической информации. Они лишь отделяют одни участки от других, как «разделительные знаки». Их называют спейсерами (от англ. спейс – пространство). Каждый из трех триплетов (УАА, УАГ, УГА) означает прекращение синтеза одной полипептидной цепи. Они называются стоп-кодонами. Триплет АУГ определяет место начала синтеза следующей полипептидной цепи.

Читайте также:  Липиды входят в состав митохондрий

Этапы биосинтеза белков

В 50-х годах XX века был выяснен механизм этого процесса. Синтез белка включает несколько этапов: транскрипцию (синтез предшественника иРНК – про-иРНК), трансляцию (перенесение последовательности нуклеотидов в молекуле иРНК в последовательность аминокислотных остатков молекулы белка) и обособление белковой молекулы.

Транскрипция

Транскрипция (от лат. thranscriptio – переписывание). Фермент PHК-полимераза разъединяет двойную цепь ДНК. По принципу комплементарности на одной из них синтезируется молекула про-иРНК. Потом она с помощью специальных ферментов превращается в активную форму иРНК. Для этого из нее удаляются участки, лишенные генетической информации. Из ядра она может поступать в цитоплазму клетки.

Трансляция

Трансляция (от лат. translatio – передача). В цитоплазме с помощью ковалентной связи каждая из 20 аминокислот присоединяется к определенной тРНК, иРНК связывается с рибосомой. Рибосома надвигается на нитевидную молекулу иРНК таким образом, что она оказывается между двумя субъединицами. По принципу комплементарности транспортная РНК, которая переносит аминокислоту, взаимодействует с помощью своего триплета – антикодона с особым триплетом иРНК – кодоном. Первый кодон дает сигнал о начале синтеза полипептидной цепи.

Возникает инициативный комплекс, который состоит из триплета иРНК, рибосомы и определенной тРНК.

Благодаря последовательному соединению пептидными связями аминокислотных остатков между собой, полипептидная цепь удлиняется. Рибосома перемещается слева направо по иРНК и образует белковую молекулу. С помощью определенной тРНК каждая из аминокислот транспортируется к рибосоме и размещается в цепи.

В рибосоме есть особый участок, где происходит трансляция – функциональный центр. Его размеры отвечают длине двух триплетов. Вместе с тем в функциональном центре может находиться два соседних триплета иРНК. В одной его части антикодон тРНК узнает кодон иРНК, а в другой – аминокислота освобождается от тРНК.

Длина молекулы иРНК определяет количество рибосом, которые одновременно могут уместиться на ней. Молекула иРНК с нанизанными на нее рибосомами называется полисомой, или полирибосомой.

Процесс синтеза белка происходит с большой затратой энергии, которая выделяется при расщеплении АТФ. На присоединение к синтезированной полипептидной цепи одного аминокислотного остатка расходуется энергия, которая высвобождается при расщеплении одной молекулы АТФ.

Синтез белковой молекулы завершается, как только рибосома достигает стоп — кодона. Рибосома вместе с белковой молекулой оставляет иРНК. Молекула белка попадает в эндоплазматическую сеть и транспортируется к определенному участку клетки, а рибосома – на любую другую молекулу иРНК. Белок приобретает определенную пространственную конфигурацию, молекула белка становится функционально активной.

У эукариот и прокариот механизмы биосинтеза белка схожи. Различаются рибосомы. Размеры рибосом у прокариот меньше. Рибосомы прокариот похожи на рибосомы митохондрий и пластид.

Биосинтез углеводов

Автотрофные организмы синтезируют подавляющее большинство углеводов. Они образуют из углекислого газа и воды шестиуглеродные моносахариды (гексозы). В ограниченном количестве из других органических соединений углеводы синтезируются в клетках гетеротрофных организмов.

В результате ферментативных реакций полисахариды образуются из моносахаридов. Биосинтез моносахаридов происходит двумя путями:

1) характерный автотрофным организмам, ведет к восстановлению С02 глюкозу;

2) благодаря ряду реакций из соединений неуглеводной природы (пировиноградной и молочной кислот, глицерина, некоторых аминокислот) образуется глюкоза.

Биосинтез липидов

Запасной формой липидов в организме являются жиры. На жирные кислоты приходится около 90 % энергии, которая запасается в жирах. С участием специфических ферментов в клетках эукариот в цитоплазме происходит биосинтез жирных кислот. Процессы эти могут продолжаться в митохондриях и некоторых других органеллах.

Жиры синтезируются в клетках кишечного эпителия, в печени, подкожной клетчатке, легких и некоторых других органах. Есть ферментные системы в некоторых тканях, которые могут обеспечить образование жиров из углеводов, в частности глюкозы.

Биосинтез нуклеиновых кислот

Все живые организмы способны синтезировать нуклеотиды. Аминокислоты служат посредниками нуклеотидов, которые входят в состав нуклеиновых кислот.

Значительная часть азотистых оснований при расщеплении нуклеиновых кислот не распадается, а используется снова для синтеза нуклеотидов. Предшественники ДНК – дезоксирибонуклеотиды образуются путем восстановления (изъятия атома кислорода) рибозы до дезоксирибозы.

Читайте также:  Облитерирующий атеросклероз сосудов нижних конечностей лечение препараты

Биосинтез ДНК

В основе процесса лежит способность молекул ДНК к самоудвоению – репликации. Процесс репликации полуконсервативный, так как каждая из двух дочерних молекул ДНК имеет одну цепь от материнской молекулы, а вторую – синтезированную на первой. Для начала репликации двухцепочечная материнская молекула ДНК должна расплестись в определенной точке.

Фермент ДНК-полимераза катализирует синтез второй цепи дочерней молекулы ДНК. Цепи материнской молекулы ДНК разделяются из-за разрушения водородных связей. С участием фермента ДНК-полимераза по принципу комплементарности к нуклеотидам каждой материнской цепи присоединяются свободные нуклеотиды. Каждая из цепей становится матрицей для синтеза новой цепи дочерней молекулы ДНК. Каждая из дочерних молекул ДНК является точной копией материнской. У-подобная зона ДНК, где происходит репликация, называется репликационной «вилкой».

Вдоль матричной цепи размещаются в определенном порядке соответствующие одиночные нуклеотиды. Новая цепь ДНК синтезируется в виде коротких фрагментов, которые потом соединяются ковалентными связями под действием особого фермента. ДНК эукариот может удваиваться одновременно во многих точках ее молекулы.

Биосинтез РНК

Все виды РНК (иРНК, тРНК, рРНК) синтезируются ферментами РНК-полимеразами по принципу комплементарности на молекуле ДНК. Процесс синтеза молекулы РНК на матрице ДНК называется транскрипцией. Фермент РНК-полимераза во время синтеза РНК продвигается вдоль определенного участка молекулы ДНК и действует подобно застежке-молнии, разъединяя двойную спираль.

Источник: xn—-9sbecybtxb6o.xn--p1ai

Синтез липидов углеводов нуклеиновых кислот

Установите соответствие между процессом и органоидом, в котором этот процесс происходит.

Б) созревание белковых молекул

В) подготовка секрета к выбросу из клетки

Г) синтез липидов

Д) окисление органических веществ

Е) транспорт электронов внутри мембраны

2) комплекс Гольджи

ПРОЦЕСС ОРГАНОИД

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

A Б В Г Д Е

1) двумембранные органоиды;

2) наружная мембрана гладкая, внутренняя со складками – кристами, на которых расположены дыхательные ферменты;

3) внутри (между кристами) находится матрикс;

4) матрикс содержит: кольцевую молекулу ДНК, рибосомы 70s, все виды РНК, ферменты;

5) образуются путем деления.

1) окисление органических веществ до углекислого газа и воды (цикл Кребса), синтез АТФ (окислительное фосфорилирование) – клеточное дыхание;

2) синтез некоторых собственных белков.

АППАРАТ (КОМПЛЕКС) ГОЛЬДЖИ:

1) одномембранный органоид эукариотической клетки;

2) состоит из уплощенных замкнутых мембранных цистерн с полостями, собранных в стопку, и мельчайших пузырьков;

3) связан с эндоплазматической сетью (органические вещества, синтезируемые в ЭПС, затем поступают в транспортных пузырьках в аппарат Гольджи).

Функции аппарата (комплекса) Гольджи:

1) модификация и упаковка веществ;

2) накапливает органические вещества, синтезированные в клетке;

3) транспорт (вынос) веществ из клетки, образуя секреторные пузырьки;

4) образование первичных лизосом (и пероксисом – в школьном курсе биологии).

(А) синтез АТФ — митохондрия;

(Б) созревание белковых молекул — комплекс Гольджи;

(В) подготовка секрета к выбросу из клетки — комплекс Гольджи;

(Г) синтез липидов — комплекс Гольджи;

(Д) окисление органических веществ — митохондрия;

(Е) транспорт электронов внутри мембраны — митохондрия.

Синтез липидов, это функция гладкой ЭПС, а не комплекс Гольджи. Поясните, пожайлуста

Комплекс Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки – белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Например, важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности комплекса Гольджи происходят обновление и рост плазматической мембраны.

Источник: bio-ege.sdamgia.ru