Органические молекулы жиры и липиды презентация

Презентация на тему: Жиры — Липиды

Общая особенность: не растворимы в воде, но растворимы в некоторых органических веществах (бензин, ацетон). Функции: 1. Участвуют в построении клеточной мембраны и дают выборочный доступ для прохождения через неё (фосфолипиды).

2. Основа для производства гормонов (сексуальных), холестерина, витамина D. 3. Запас энергии: способность накапливаться в жировых клетках под кожей, внутренних органах, тканях покрытия. Распределение происходит на генетическом уровне. 4. Растворяют в себе некоторые необходимые витамины. 5. Термоизоляция, защита от механических воздействий.

Источники в пище Растительная: соя, орехи, маслины и оливки, масло подсолнечное, оливковое, кунжут, канола, авокадо, кокос.

Животная: Животная: яичный желток, сливочное масло, сметана, мясные продукты, мясо птицы, сыры, рыба.

Эйкозановые кислоты ((Eicosanoids Есть 2 незаменимых жирных кислоты – линолевая (омега 6) и линоленовая (омега 3). Организм их не производит и необходимо их поступление извне. Из этих кислот извлекаются арахидоновая кислота (АА), эйкозапентаеновая (EPA) и докозагексаеновая (DHA). Эйкозановые кислоты производятся из АА, DHA и из EPA и используются как вещества, противодействующие развитию болезней сердца, мозга и образованию холестериновых бляшек в сосудах. Рекомендовано принимать: 6-10г линолевой кислоты и 1-2г линоленовой в сутки.

простагландины: Функции: мышечное сокращение, понижение артериального давления, терморегуляция, регуляция выделения желудочного сока, противовоспалительная. лейкотриены: (образуются в лейкоцитах). Функции: участие в аллергических реакциях, противовоспалительная, регуляция образования и количества лейкоцитов. тромбоксаны: отвечают за скорость свертываемости крови и количество тромбоцитов, повышают АД.

Жирные кислоты Отличаются по длине молекулярной цепи и насыщенности. По строению состоят из парных молекул углерода: 2-4 молекулы – короткая, 6-10 молекул средняя, 12-22 молекулы – длинная. Молекула углерода первая в цепи называется ОМЕГА.

Омега 3 Источник: морская рыба. Ежедневное употребление резко снижает риск заболеваний сердца и сосудов, развития раковых клеток, повышения АД, болезни Альцгеймера, депрессивных состояний. Рекомендовано: 2 порции морской рыбы в неделю. Всего в балансе суточного приема пищи жиры (ненасыщенные) составляют 20% от общего рациона.

Триглицериды Главная составляющая жиров, поступающая вместе с пищей в организм человека. Триглицериды содержат насыщенные жирные кислоты и ненасыщенные (определяются, как жидкие по плотности при комнатной температуре).

Триглицериды поглощаются и складируются в жировых и мышечных клетках, как источник энергии. Липолиз – распад триглицеридов на отдельные жирные кислоты, которые в дальнейшем используются, как энергия при поступлении в кровь, или как материал для переноса белками в различные клетки организма.

Липопротеины Молекулы жира, связанные с белками для переноса триглицеридов и жирных кислот в крови (VLDL,HDL).

Холестерин (холестерол) Открыт в 1733 году , впервые извлечен из желчных камней в 1769 году. Образуется в клетках организма, но больше всего в печени (1500мг в день), и поэтому не необходим, как источник пищи. Используется при построении гормонов, образования желчи, является составляющей клеточной мембраны (печени, клеток крови).

Животная пища – источник холестерина Яйцо — 560мг Молоко 3% (стакан) – 26мг Масло сливочное (100г) – 260мг Сыр (кусочек) – 25мг Говяжьи мозги (100г) – 1990мг Говядина (100г) – 120мг Печень говяжья (100г) – 390мг Семга (кусок) – 70мг Яичный желток (50г) – 1342мг Куриное мясо (100г) – 60-90мг Индюшиное мясо (100г) – 60-80мг Общая рекомендация: не более 300мг в сутки.

Болезни сердца и сосудов Холестерол низкой плотности (LDL) прикрепляется к стенкам сосудов, образуя холестериновые бляшки – причину атеросклероза. Холестерол высокой плотности (HDL) срывает бляшки и удаляет их из организма через желчь и ЖКТ.

Соотношение HDL и LDL напрямую влияет на возникновение болезней сердца, сосудов, гипертонии. Это зависит от генетики, привычек питания, физической активности. Исследования показали, что пища, богатая ненасыщенными жирами (авокадо, орехи, оливки, масла растительные), сильно уменьшает риск возникновения вышеперечисленных болезней

Источник: ppt4web.ru

Презентация «Органические вещества. Общая характеристика. Липиды».
презентация к уроку по биологии (10 класс)

Презентация «Органические вещества. Общая характеристика. Липиды».

Скачать:

Вложение Размер
organicheskie_veshchestva_kletki.ppt 2.26 МБ

Предварительный просмотр:

Подписи к слайдам:

Тема урока: «Органические вещества клетки. Общая характеристика. Липиды». Окорокова Елена Семеновна, учитель биологии, МБОУ «Школа №72» 2015 год

Органические вещества – это сложные углеродсодержащие соединения .

Простейшие углеродные соединения МЕТАН — углеводород

Углеводородные соединения Каротин (в его состав входит сорок атомов углерода) содержится:

Основные группы органических веществ

Органические соединения Низкомолекулярные: Аминокислоты, Липиды, Низкомолекулярные органические кислоты (молочная, уксусная, муравьиная кислоты) Высокомолекулярные: Биополимеры, Органические кислоты (ДНК, РНК)

Полимеры – это молекулы, состоящие из повторяющихся структурных единиц (звеньев) – мономеров (химическое соединение, состоящее из простых молекул) Гомополимеры , или регулярные, построенные из мономеров одного типа (например, гликоген, крахмал, целлюлоза состоят из молекул глюкозы) Гетерополимеры , или нерегулярные, в состав которых входят отличающиеся друг от друга мономеры(например, белки состоят из 20 типов аминокислот, а нуклеиновые кислоты – из 8 типов нуклеотидов)

Липиды ПРОСТЫЕ: Нейтральные жиры, Воски СЛОЖНЫЕ: Фосфолипиды , Гликолипиды, Липопротеиды ЛИПОИДЫ: Жирные кислоты, Глицерин, Холестерин, Желчные кислоты, Жирорастворимые витамины, Стероидные гормоны Липиды — это гидрофобные соединения, не растворимые в воде

Функции липидов: Энергетическая Структурная Источник метаболической воды Защитная Запасающая Регуляторная Каталитическая

Домашнее задание: с.37-40, вопросы для повторения сделать презентацию «Органические вещества. Углеводы».

По теме: методические разработки, презентации и конспекты

Проверочная работа состоит из 2-х частей. Часть А- химический диктант. Часть В- нужно написать уравнения реакций.

Данная публикация иллюстрирует второй урок ОБЖ в 7 классе «»Общая характеристика природных явлений»» (презентация) по программе «Основы безопасности жизнедеятельности» для 1 – 11 классов о.

Данная публикация иллюстрирует третий урок ОБЖ в 7 классе «Опасные и ЧС. Общие понятия и определения» (презентация) по программе «Основы безопасности жизнедеятельности» для 1 – 11 классов .

Урок «Органические вещества клетки: белки, липиды, углеволы» разработан с использованием модульной технологии. Данный урок разработан для 9 класса по УМК Н. И. Сонина.

Презентация предназначена для обеспечения наглядности и организации деятельности обучающихся на 2-х уроках географии в 10 классе по изучению США. На первом уроке после общей характеристики страны.

Предложенный материал позволит организовать на уроке групповую самостоятельную работу учащихся с планом-конспектом и с учебной литературой.

Технологическая карта урока «Органические вещества. Общая характеристика. Липиды».

Источник: nsportal.ru

Презентация по химии «Липиды»

Описание разработки

К липидам относят природные органические соединения, не растворимые в воде, но растворимые в жирорастворителях (бензин, петролейный эфир, серный эфир, ацетон, хлороформ, сероуглерод, метиловый и этиловый спирты и т. п.), являющиеся производными высших жирных кислот и способные утилизироваться живыми организмами.

Название одной из групп липидов, а именно — жиров (от греч. липос жир) взято для обозначения класса в целом. Липиды — сборная группа органических соединений и поэтому не имеют единой химической характеристики. Однако в известной мере их можно рассматривать как класс органических соединений, большинство из которых принадлежит к сложным эфирам многоатомных или специфически построенных спиртов с высшими жирными кислотами. В зависимости от состава, строения и роли в организме сложилась следующая классификация липидов.

1. Простые липиды представлены двухкомпонентными веществами — сложными эфирами высших жирных кислот с глицерином, высшими или полициклическими спиртами. Сюда относятся: жиры (триглицериды) -сложные эфиры высших жирных кислот и тpexaтомного спирта-глицерина; воски — сложные эфиры высших жирных кислот и высших спиртов; стериды — сложные эфиры высших жирных кислот и полициклических спиртов -стеролов.

2. Сложные липиды имеют многокомпонентные молекулы, компоненты которых соединены химическими связями различного типа. К ним принадлежат: фосфолипиды состоящие из остатков высших жирных кислот, глицерина или других многоатомных спиртов, фосфорной кислоты и азотистых оснований той или иной природы; гликолипиды, включающие в свой состав наряду с многоатомным спиртом и высшей жирной кислотой также углеводы.

Простые и сложные липиды легко омыляются. Однако в суммарной фракции липидов, выделенной из природного материала экстракцией жирорастворителями, всегда присутствуют вещества, обладающие такой же растворимостью, как и липиды, но не способные омыляться.

Они называются неомыляемой фракцией липидов. В ее состав входят свободные высшие жирные кислоты, высшие спирты и полициклические спирты (стеролы, производные стеролов — стероиды, жирорастворимые витамины, высшие гомологи предельных углеводородов и другие соединения. Это дало повод некоторым авторам рассматривать неомыляемую фракцию липидов как одну из групп липидов. Однако для такого расширения границ класса липидов нет достаточных оснований.

Из указанных веществ жиры, стериды, фосфолипиды и диольные липиды распространены повсеместно, их участие в построении клеточных структур и в биохимических процессах весьма велико. Воски представляют в этом смысле менее важную группу соединений. Долгое время считали, что гликолипиды присутствуют только в нервной ткани, однако впоследствии их нашли в хлоропластах растений. Орнитинолипиды присущи микроорганизмам.

Липиды обладают способностью образовывать со многими другими органическими соединениями (особенно с высокомолекулярными — белками, углеводами) комплексы, которым в настоящее время придают большое значение в осуществлении ряда важнейших биохимических функций. В виде таких комплексов, особенно с белками, липиды входят в состав цитоплазматических мембран, субклеточных частиц и бактериальных мембран. Так, в Ядрах клеток липиды составляют около 15% от сухого вещества, в митохондриях — 20, в эндоплазматическом ретикулуме -30 и в гиалоплазме -10%. Только в гиалоплазме в составе липидов преобладают триглицериды (70%), тогда как в остальных субклеточных элементах более 90% приходится на фосфолипиды, стериды и гликолипиды.

Широко известно значение липидов, особенно жиров, как субстратов для окисления и обеспечения организма энергией: при распаде 1 г жира до CO2 и Н2О ее выделяется 38,9 кДж, тогда как при распаде 1 г углеводов или белков — всего 16,1 кДж. Естественно, что при окислении липидов возникают метаболиты, широко вовлекаемые в биосинтез других соединений.

Важнейшей функцией липидов является также структурная. Образуя матрикс мембран в виде двойных липидных слоев, липиды являются основой любой биологической мембраны. Из рис. 120 видно, что липидный бислой образует ее самую существенную часть, составляя от 15 до 50% ее сухого вещества. Перечисленные ФУНКЦИИ липидов (энергетическая, запасная, поставщика метаболитов и структурная) получили название канонических.

Благодаря участию в деятельности мембранного аппарата клетки реализуются такие важнейшие биологические функции липидов, как регуляция деятельности ряда гормонов и активности ферментов (сейчас известно несколько сотен липидзависимых ферментов), влияние на процессы транспорта метаболитов и макромолекул, контроль реакций биологического окисления и энергетического обмена, связь с репликацией ДИК и ее матричной активностью, компартментализация обменных процессов в клетке вплоть до формирования мембранных машин (хлоропластов, митохондрий), участие в межклеточных взаимодействиях (особенно в эмбрио- и онтогенезе), обеспечение молекулярной памяти и пиктографического механизма записи информации.

Перечисленные функции липидов характеризуют как неканонические. За выяснение некоторых из них большой группе советских ученых (Е.М. Крепс, Д. Бергельсон, Р.П. Евстигнеева и др.) в 1985 г. присуждена Государственная премия.

Свойства мембран как надсистем регуляции клеточного метаболизма, их конформационные перестройки, изменение их вязкости зависят от соотношения различных видов липидов в мембране, степени окисленности последних, состояния межмембранного и внутримембранного переноса липидов и т. п. Все названные явления столь важны для понимания процессов жизнедеятельности, что биохимия мембран постепенно перерастает в биологию мембран, объясняющую ряд фундаментальных закономерностей в развитии организма.

Источник: videouroki.net

Презентация по химии «Липиды»

Описание разработки

К липидам относят природные органические соединения, не растворимые в воде, но растворимые в жирорастворителях (бензин, петролейный эфир, серный эфир, ацетон, хлороформ, сероуглерод, метиловый и этиловый спирты и т. п.), являющиеся производными высших жирных кислот и способные утилизироваться живыми организмами.

Название одной из групп липидов, а именно — жиров (от греч. липос жир) взято для обозначения класса в целом. Липиды — сборная группа органических соединений и поэтому не имеют единой химической характеристики. Однако в известной мере их можно рассматривать как класс органических соединений, большинство из которых принадлежит к сложным эфирам многоатомных или специфически построенных спиртов с высшими жирными кислотами. В зависимости от состава, строения и роли в организме сложилась следующая классификация липидов.

1. Простые липиды представлены двухкомпонентными веществами — сложными эфирами высших жирных кислот с глицерином, высшими или полициклическими спиртами. Сюда относятся: жиры (триглицериды) -сложные эфиры высших жирных кислот и тpexaтомного спирта-глицерина; воски — сложные эфиры высших жирных кислот и высших спиртов; стериды — сложные эфиры высших жирных кислот и полициклических спиртов -стеролов.

2. Сложные липиды имеют многокомпонентные молекулы, компоненты которых соединены химическими связями различного типа. К ним принадлежат: фосфолипиды состоящие из остатков высших жирных кислот, глицерина или других многоатомных спиртов, фосфорной кислоты и азотистых оснований той или иной природы; гликолипиды, включающие в свой состав наряду с многоатомным спиртом и высшей жирной кислотой также углеводы.

Простые и сложные липиды легко омыляются. Однако в суммарной фракции липидов, выделенной из природного материала экстракцией жирорастворителями, всегда присутствуют вещества, обладающие такой же растворимостью, как и липиды, но не способные омыляться.

Они называются неомыляемой фракцией липидов. В ее состав входят свободные высшие жирные кислоты, высшие спирты и полициклические спирты (стеролы, производные стеролов — стероиды, жирорастворимые витамины, высшие гомологи предельных углеводородов и другие соединения. Это дало повод некоторым авторам рассматривать неомыляемую фракцию липидов как одну из групп липидов. Однако для такого расширения границ класса липидов нет достаточных оснований.

Из указанных веществ жиры, стериды, фосфолипиды и диольные липиды распространены повсеместно, их участие в построении клеточных структур и в биохимических процессах весьма велико. Воски представляют в этом смысле менее важную группу соединений. Долгое время считали, что гликолипиды присутствуют только в нервной ткани, однако впоследствии их нашли в хлоропластах растений. Орнитинолипиды присущи микроорганизмам.

Липиды обладают способностью образовывать со многими другими органическими соединениями (особенно с высокомолекулярными — белками, углеводами) комплексы, которым в настоящее время придают большое значение в осуществлении ряда важнейших биохимических функций. В виде таких комплексов, особенно с белками, липиды входят в состав цитоплазматических мембран, субклеточных частиц и бактериальных мембран. Так, в Ядрах клеток липиды составляют около 15% от сухого вещества, в митохондриях — 20, в эндоплазматическом ретикулуме -30 и в гиалоплазме -10%. Только в гиалоплазме в составе липидов преобладают триглицериды (70%), тогда как в остальных субклеточных элементах более 90% приходится на фосфолипиды, стериды и гликолипиды.

Широко известно значение липидов, особенно жиров, как субстратов для окисления и обеспечения организма энергией: при распаде 1 г жира до CO2 и Н2О ее выделяется 38,9 кДж, тогда как при распаде 1 г углеводов или белков — всего 16,1 кДж. Естественно, что при окислении липидов возникают метаболиты, широко вовлекаемые в биосинтез других соединений.

Важнейшей функцией липидов является также структурная. Образуя матрикс мембран в виде двойных липидных слоев, липиды являются основой любой биологической мембраны. Из рис. 120 видно, что липидный бислой образует ее самую существенную часть, составляя от 15 до 50% ее сухого вещества. Перечисленные ФУНКЦИИ липидов (энергетическая, запасная, поставщика метаболитов и структурная) получили название канонических.

Благодаря участию в деятельности мембранного аппарата клетки реализуются такие важнейшие биологические функции липидов, как регуляция деятельности ряда гормонов и активности ферментов (сейчас известно несколько сотен липидзависимых ферментов), влияние на процессы транспорта метаболитов и макромолекул, контроль реакций биологического окисления и энергетического обмена, связь с репликацией ДИК и ее матричной активностью, компартментализация обменных процессов в клетке вплоть до формирования мембранных машин (хлоропластов, митохондрий), участие в межклеточных взаимодействиях (особенно в эмбрио- и онтогенезе), обеспечение молекулярной памяти и пиктографического механизма записи информации.

Перечисленные функции липидов характеризуют как неканонические. За выяснение некоторых из них большой группе советских ученых (Е.М. Крепс, Д. Бергельсон, Р.П. Евстигнеева и др.) в 1985 г. присуждена Государственная премия.

Свойства мембран как надсистем регуляции клеточного метаболизма, их конформационные перестройки, изменение их вязкости зависят от соотношения различных видов липидов в мембране, степени окисленности последних, состояния межмембранного и внутримембранного переноса липидов и т. п. Все названные явления столь важны для понимания процессов жизнедеятельности, что биохимия мембран постепенно перерастает в биологию мембран, объясняющую ряд фундаментальных закономерностей в развитии организма.

Источник: videouroki.net