Липиды на основе глицерина

Липиды на основе глицерина

Глава II. ЛИПИДЫ

§ 4. КЛАССИФИКАЦИЯ И ФУНКЦИИ ЛИПИДОВ

Липиды представляют собой неоднородную группу химических соединений, нерастворимых в воде, но хорошо растворимых в неполярных органических растворителях: хлороформе, эфире, ацетоне, бензоле и др., т.е. общим их свойством является гидрофобность (гидро – вода, фобия – боязнь). Из-за большого разнообразия липидов дать более точное определение им невозможно. Липиды в большинстве случаев являются сложными эфирами жирных кислот и какого-либо спирта. Выделяют следующие классы липидов: триацилглицерины, или жиры, фосфолипиды, гликолипиды, стероиды, воска, терпены. Различают две категории липидов – омыляемые и неомыляемые. К омыляемым относятся вещества, содержащие сложноэфирную связь (воска, триацилглицерины, фосфолипиды и др.). К неомыляемым относятся стероиды, терпены.

Триацилглицерины, или жиры

Триацилглицерины являются сложными эфирами трехатомного спирта глицерина

и жирных (высших карбоновых) кислот. Общая формула жирных кислот имеет вид: R-COOH, где R – углеводородный радикал. Природные жирные кислоты содержат от 4 до 24 атомов углерода. В качестве примера приведем формулу одной из наиболее распространенной в жирах стеариновой кислоты:

В общем виде молекулу триацилгицерина можно записать так:

Если в состав триациоглицерина входят остатки различных кислот (R1 R2 R3), то центральный атом углерода в остатке глицерина становится хиральным.

Триацилглицерины неполярны и вследствие этого практически нерастворимы в воде. Основная функция триацилглицеринов – запасание энергии. При окислении1 гжира выделяется 39 кДж энергии. Триацилглицерины накапливаются в жировой ткани, которая, кроме депонирования жира, выполняет термоизолирующую функцию и защищает органы от механических повреждений. Более подробную информацию о жирах и жирных кислотах вы найдете в следующем параграфе.

Интересно знать! Жир, которым заполнен горб верблюда, служит, в первую очередь, не источником энергии, а источником воды, образующейся при его окислении.

Фосфолипиды содержат гидрофобную и гидрофильную области и поэтому обладают амфифильнымы свойствами, т.е. они способны растворяться в неполярных растворителях и образовывать стойкие эмульсии с водой.

Фосфолипиды в зависимости от наличия в их составе спиртов глицерина и сфингозина делятся на глицерофосфолипиды и сфингофосфолипиды.

В основе строения молекулы глицерофосфолипидов лежит фосфатидная кислота, образованная глицерином, двумя жирными и фосфорной кислотами:

В молекулах глицерофосфолипидов к фосфатидной кислоте сложноэфирной связью присоединена НО-содержащая полярная молекула. Формулу глицерофосфолипидов можно представить так:

где Х – остаток НО-содержащей полярной молекулы (полярная группировка). Названия фосфолипидов образуются в зависимости от наличия в их составе той или иной полярной группировки. Глицерофосфолипиды, содержащие в качестве полярной группировки остаток этаноламина,

носят название фосфатидилэтаноламинов, остаток холина

Формула фосфатидилэтаноламина выглядит так:

Глицерофосфолипиды отличаются друг от друга не только полярными группами, но и остатками жирных кислот. В их состав входят как насыщенные (состоящие обычно из 16 – 18 атомов углерода), так и ненасыщенные (содержащие чаще 16 – 18 атомов углерода и 1 – 4 двойные связи) жирные кислоты.

Сфингофосфолипиды по составу сходны с глицерофосфолипидами, но вместо глицерина содержат аминоспирт сфингозин:

Наиболее распространенными сфингофосфолипидами являются сфингомиелины. Они образованы сфингозином, холином, жирной кислотой и фосфорной кислотой:

Молекулы как глицерофосфолипидов, так и сфингофосфолипидов состоят из полярной головы (образована фосфорной кислотой и полярной группировкой) и двух углеводородных неполярных хвостов (рис.1). У глицерофосфолипидов оба неполярных хвоста являются радикалами жирных кислот, у сфингофосфолипидов – один хвост является радикалом жирной кислоты, другой – углеводородной цепочкой спирта сфингазина.

Рис. 1. Схематическое изображение молекулы фосфолипида.

При встряхивании в воде фосфолипиды спонтанно формируют мицеллы, в которых неполярные хвосты собираются внутри частицы, а полярные головы располагаются на ее поверхности, взаимодействуя с молекулами воды (рис. 2а). Фосфолипиды способны образовывать также бислои (рис. 2б) и липосомы – замкнутые пузырьки, окруженные непрерывным бислоем (рис. 2в).

Рис. 2. Структуры, образуемые фосфолипидами.

Способность фосфолипидов, образовывать бислой, лежит в основе формирования клеточных мембран.

Гликолипиды

Гликолипиды содержат в своем составе углеводный компонент. К ним относятся гликосфинголипиды, содержащие, кроме углевода спирт, сфингозин и остаток жирной кислоты:

Они так же, как и фосфолипиды, состоят из полярной головы и двух неполярных хвостов. Гликолипиды располагаются на внешнем слое мембраны, являются составной частью рецепторов, обеспечивают взаимодействие клеток. Их особенно много в нервной ткани.

Стероиды

Стероиды являются производными циклопентанпергидрофенантрена (рис. 3). Один из важнейших представителей стероидов – холестерин. В организме он встречается как в свободном состоянии, так и в связанном, образуя сложные эфиры с жирными кислотами (рис. 3). В свободном виде холестерин входит в состав мембран и липопротеинов крови. Сложные эфиры холестерина являются его запасной формой. Холестерин является предшественником всех остальных стероидов: половых гормонов (тестостерон, эстрадиол и др.), гормонов коры надпочечников (кортикостерон и др.), желчных кислот (дезоксихолевая и др.), витамина D (рис. 3).

Интересно знать! В организме взрослого человека содержится около 140 г холестерина, больше всего его находится в нервной ткани и надпочечниках. Ежедневно в организм человека поступает 0,3 – 0,5 г холестерина, а синтезируется – до 1 г.

Воска

Воска – это сложные эфиры, образованные длинноцепочечными жирными кислотами (число атомов углерода 14 – 36) и длинноцепочечными одноатомными спиртами (число атомов углерода 16 – 22). В качестве примера рассмотрим формулу воска, образованного олеиновым спиртом и олеиновой кислотой:

Воска выполняют главным образом защитную функцию, находясь на поверхности листьев, стеблей, плодов, семян они защищают ткани от высыхания и проникновения микробов. Они покрывают шерсть и перья животных и птиц, предохраняя их от намокания. Пчелиный воск служит строительным материалом для пчел при создании сот. У планктона воск служит основной формой запасания энергии.

Читайте также:  Холестерин из вены и пальца

Терпены

В основе терпеновых соединений лежат изопреновые остатки:

К терпенам относятся эфирные масла, смоляные кислоты, каучук, каротины, витамин А, сквален. В качестве примера приведем формулу сквалена:

Сквален является основным компонентом секрета сальных желез.

Источник: ebooks.grsu.by

Липиды

Среди низкомолекулярных органических соединений, которые входят в состав всех живых клеток, важнейшую роль играют жиры (липиды) (греческий λίπος, lípos — жир) и жироподобные вещества (липоиды). Они относятся к гидрофобным соединениям, т.е. в воде не растворяются. Хорошо растворяются они в неполярных органических растворителях (например, хлороформе, бензоле или эфире). Жирами обычно называют нейтральные липиды — эфиры трехатомного спирта глицерина и жирных кислот (карбоновые кислоты с числом атомов от 14 до 22 (но чаще всего 16 или 18). В зависимости от того сколько гидроксильных групп глицерина связано эфирными связями с жирными кислотами образуются триглицериды (все гидроксильные группы), диглицериды (две гидроксильные группы) и моноглицериды (соответственно, одна гидроксильная группа). У жирных кислот, которые входят в состав липидов, обычно содержится четное число атомов углерода. Они редко бывают разветвленными (встречается только у некоторых микроорганизмов). Если в молекулах жирных кислот есть двойные связи (одна или несколько), их называют ненасыщенными или полиненасыщенными. Ненасыщенные жирные кислоты плавятся при низкой температуре, в связи с этим, образованные ими липиды жидкие при температуре тела или при температуре окружающей среды (например, растительные масла). У насыщенных жирных кислот нет двойных связей. Температура их плавления выше (например, сливочное масло или свиное сало).

Глицерин и жирные кислоты — главные молекулы для образования триацилгрицериды и фосфолипиды

Главная функция жиров в живом организме — энергетическая. В процессе полного окисления жиров до воды и углекислого газа может выделяться большое количество энергии (38,9 кДж/г или более 9 ккал/г энергии), что примерно в два раза выше, чем при окислении такого же количества углеводов. Практически все живые организмы запасают энергию в виде жиров. Жиры откладываются в форме капель в клеточной цитоплазме. Особенно много таких капель в клетках жировой ткани. У позвоночных есть даже специализированные клетки адипоциты, которые практически полностью заполнены одной большой каплей жира.

Жиры в живых организмах могут служить в качестве источника воды, т.к. при их окислении образуется большое количество воды (из 1 г жира получается 1.1 г воды). Это свойство жира используется животными пустынь (например, верблюдами) или животными, впадающими в зимнюю спячку (сурки, суслики и т.п.), для нужд метаболизма. Эти животные могут долгое время обходиться без воды благодаря своим жировым запасам.

Жир хороший теплоизолятор. У многих теплокровных животных нейтральные жиры откладываются в основном в подкожной клетчатке, где создают хороший теплоизоляционный слой, уменьшая потери тепла. Особенно характерен толстый подкожный жировой слой для морских млекопитающих (китов, моржей и т.д.). Таким образом, жиры выполняют теплоизоляционную функцию. Обратите внимание, что у животных, обитателей жаркого климата, жировые запасы, используемые в качестве источника воды, откладываются на изолированных участках тела. У верблюдов — это горбы, у жирнохвостых тушканчиков — в хвостах.

Жир выполняет также защитную функцию. Слой жира вокруг внутренних органов животных защищает их от механических повреждений при прыжках, ударах, движении. Например, сивучи, имея вес около тонны, свободно прыгают в воду с 20 метровых скал.

В составе биологических мембран в небольших количествах присутствуют нейтральные жиры, однако их основу составляют не жиры, а фосфолипиды, относящиеся к липоидам или жироподобным веществам. Фосфолипиды также относятся к эфирам глицерина и жирных кислот, но в их молекулах только две спиртовые группы связаны с глицерином, третья группа связана эфирной связью с остатком фосфорной кислоты. Обычно фосфорная кислота образует дополнительную эфирную связь с низкомолекулярными спиртами, таким образом, формируются различные классы фосфолипидов.

О том, как формируются названия фосфолипидов в зависимости от того, какой спирт входит в его состав. Если в состав фосфолипида входит аминоспирт холин, получается фосфатидилхолин (лецитин), аминоспирт этаноламин дает фосфатидилэтаноламин (кефалин), если содержащая спиртовую группу аминокислота серин, то будет фосфатидилсерин и т.д.

Т.е. молекулы фосфолипидов состоят из гидрофобной (остатки жирных кислот) и гидрофильной (фосфорная кислота с присоединенным к ней спиртом) частей. В связи с этим, эти молекулы могут контактировать и с полярными, и с неполярными растворителями. Подобные вещества называются амфифильными. В воде и водных растворах фосфолипиды самопроизвольно формируют мицеллы, липосимы или протяженные плоские липидные бислои.

Схема образования мицеллы

Мицеллы, частицы или капли, объединения из десятков или даже сотен амфильных молекул, в которых гидрофобные радикалы (неполярные хвосты жирных кислот) образуют ядро, а гидрофильные группы (полярные головки) — поверхностный слой. Липосомы — замкнутые пузырьки (фосфолипидные везикулы), заполненные водой, со стенками из одного или нескольких бислоев фосфолипидов. Толщина слоев составяет две молекулы.
Молекулы в плоском липидном бислое располагаются таким образом, что их неполярные «хвосты» направлены во внутрь бислоя, образуя там гидрофобную область, а их полярные части обращены в сторону водной среды, образуя две гидрофильные поверхности.

Схема липидного плоского бислоя

Протяженные плоские бислои — это основа всех биологических мембран. Такие мембраны окружают клетки и создают гидрофобный барьер между внутриклеточным содержимым и наружной средой. В клеточных органоидов мембраны отделяют их содержимое от гиалоплазмы и делят клетку на отсеки, называемые компартменты. Для полярных соединений (соли, аминокислоты, сахара) мембраны практически непроницаемы, для воды плохо проницаемы, зато для гидрофобных веществ имеют высокую проницаемость. В состав мембран входят различные белки, обеспечивающие перенос через них (мембраны) различных веществ, затрачивая на это иногда энергию АТФ, или участвующие в передаче сигналов внутрь клетки (ионные насосы, ионные каналы, белки-переносчики, рецепторы гормонов или нейромедиаторов и т.д.). Т.к. в составе фосфолипидов, входящих в биологические мембраны, присутствует много жирных кислот (ненасыщенных и полиненасыщенных), сами биологические мембраны находятся в полужидком состоянии при нормальной температуре обитания, что обеспечивает им гибкость, упругость, а также высокую подвижность встроенных в них белков.
Таким образом, основной функцией фосфолипидов является структурная функция — формирование биологических мембран.

Особое место среди липоидов занимают стероиды — полициклический спирт холестерол (чаще называемый холестерин) и его производные. Холестерин и эфиры холестерина с жирными кислотами, входящие в состав биологических мембран, придают им определенную жесткость (т.е выполняют структурную функцию). Холестерин служит для образования различных гармонов. В надпочечниках, а точнее в их корковом слое, из него образуются стероидные гормоны (минералокортикоиды и глюкокортикоиды). С их помощью происходит регуляция водно-солевого и углеводного обмена. В половых железах образуются половые гормоны: андрогены и эстрогены. В клетках печени холестерин служит основой для образования желчных кислот, необходимых для нормального переваривания жиров в кишечном тракте. Эти кислоты являются поверхностно-активными веществами и способны эмульгировать жировые капли; они также активируют липазы — ферменты, расщепляющие жиры и выделяемые в двенадцатиперстную кишку поджелудочной железой. Другими словами, холестерин и его производные выполняют важную регуляторную функцию.

Нарушения в обмене холестерина вызывают серьезное заболевание атеросклероз, при котором холестерин сужает, а иногда и полностью перекрывает кровеносные сосуды, откладываясь на их стенках в виде бляшек. Это нарушает кровоснабжение органов и тканей. Это приводит к развитию ишемии (недостаточное снабжение кислородом) мозга и сердца, а, в конечном итоге, к инсульту (поражение мозга) или инфаркту миокарда. Курение и употребление спиртного также способствуют развитию атеросклероза.

Воска относятся к жироподобным веществам и представляют собой эфиры жирных кислот и многоатомных спиртов. У животных их вырабатывают кожные железы. Воска покрывают шерсть животных или перья птиц тонким слоем и предохраняют их от намокания. Воска используются пчелами при постройке сотов. Растения используют воска для создания защитного налета на своих листьях и плодах. Много восков вырабатывают морские планктонные микроорганизмы.

К липоидам также относят жирорастворимые витамины — А, D, Е, К, обладающие высокой биологической активностью.

Источник: www.studentguru.ru

Липиды — триглицериды, фосфолипиды и стероиды

Липиды — это большая группа органических молекул (то есть содержащих углерод), нерастворимых в воде, но растворимых в спирте. Существуют три основные группы липидов: триглицериды, фосфолипиды и стероиды.

Триглицериды

Триглицериды состоят из одной молекулы глицерина, соединенной с тремя длинными цепочками жирных кислот. Глицериновая основа у всех триглицеридов одинаковая, но состав цепочек жирных кислот варьируется, образуя большое количество различных триглицеридов.

Жирные кислоты выделяют большое количество энергии, когда усваиваются клетками. Эти свойства вместе с тем фактом, что они не растворяются в воде, делают триглицериды превосходным источником энергии. И значительная часть потребностей тела в долговременной энергии обеспечивается жирными кислотами.

Насыщенные и ненасыщенные жирные кислоты

Атомы углерода насыщенных жиров дополняются атомами водорода (то есть как бы «насыщаются» ими) и одинаковы для всех животных жиров.

А в ненасыщенных жирах атомы углерода могут быть связаны с дополнительными атомами водорода. Именно количество связанных атомов водорода и определяет тип жиров — мононенасыщенные или полиненасыщенные.

Фосфолипиды

Фосфолипиды схожи с триглицеридами в том, что у них глицериновая основа.

Однако, в отличие от триглицеридов, у фосфолипидов только две цепочки жирной кислоты; вместо третьей цепочки у них имеется фосфорсодержащая «головка».

«Хвост» фосфолипида (состоит из двух цепочек жирной кислоты) не имеет электрического заряда и поэтому не смешивается с водой (вода электрически заряжена), тогда как фосфорсодержащая «головка» смешивается с водой, поскольку имеет электрический заряд. Эти свойства делают фосфолипиды идеальными строительными блоками для клеточной мембраны.

Клеточные мембраны состоят из двух слоев молекул фосфолипидов; «гидрофобные» хвосты направлены друг на друга, тогда как «гидрофильные» головки направлены на воду, присутствующую и внутри, и снаружи клетки.

Стероиды

Структура стероидов совершенно отличается от структуры триглицеридов и фосфолипидов, хотя стероиды классифицируются как липиды, поскольку они жирорастворимые.

Самым важным стероидом в человеческом теле является холестерин, так как он предшественник многих стероидных гормонов, необходимых для развития организма и долговременного здоровья.

Другие стероиды, например половые гормоны, присутствуют в очень небольших количествах, но они необходимы.

Другие молекулы на основе липидов: жирорастворимые витамины, эйкозаноиды, липопротеины

Липиды также главные компоненты трех других важных групп молекул.

Жирорастворимые витамины включают витамины A, D, Е и К. Поскольку они могут абсорбироваться только после соединения с находящимися внутри липидами, то все, что влияет на абсорбцию жира, также мешает абсорбции жирорастворимых витаминов.

Включают простагландины и лейкотриены, участвующие в воспалительных процессах, а также тромбоксаны, вызывающие сжатие кровеносных сосудов.

Эти химические вещества переносят жирные кислоты и холестерин в кровоток. Липопротеины бывают высокой и низкой плотности.

Источник: www.sportmassag.ru

Х и м и я

Биоорганическая химия

Сложные омыляемые липиды.

О названии

Напомним, что большая группа «Омыляемых липидов» подразделяется на две подгруппы:

1. простые омыляемые липиды и

2. сложные омыляемые липиды.

Омыляемыми они называются из-за того, что при гидролизе из них образуются соли высших карбоновых кислот, т.е. мыла.

Сложные липиды получили своё название из-за того, что имеют более сложное строение в сравнении с простыми липидами (восками и жирами).

Молекулы простых липидов состоят из атомов углерода (С), водорода (H) и кислорода (О).

В состав молекул сложных липидов, помимо атомов углерода, водорода и кислорода, входят атомы других элементов. Чаще всего это: фосфор (Р), сера (S) и азот (N). При этом структура молекул сложных липидов действительно более сложная, чем структура молекул простых липидов.

Классификация сложных липидов.

Сложные липиды часто трудно классифицировать, так как они содержат группировки, позволяющие отнести их к нескольким группам.

Тем не мнее, сложные липиды принято делить на три большие группы:

1. Фосфолипиды
  • Глицерофосфолипиды — Фосфатиды — Фосфатидилсерины — Фосфатидилэтаноламины — Фосфатдилилхолины (лецитины) — Плазмалогены
  • Сфингомиелины
2. Сфинголипиды
  • Сфингомиелины
  • Церамиды
  • Цереброзиды — Галактоцереброзиды — Глюкоцереброзиды.
3. Гликолипиды
  • Цереброзиды
  • Ганглиозиды

Если вы обратили внимание, cфингомиелины входят сразу в две группы (фосфолипидов и cфинголипидов).

А цереброзиды одновременно входят в группы сфинголипидов и гликолипидов.

Это происходит потому, они содержат группировки, позволяющие отнести их к нескольким группам.

Химический состав сложных липидов

Фосфолипиды

Фосфорсодержащие сложные липиды называются фосфолипидами.

Фосфолипиды — это сложные эфиры многоатомных спиртов и высших жирных кислот. В своём составе содержат остаток фосфорной кислоты и соединенную с ней добавочную группу атомов различной химической природы.

К фосфолипидам относятся глицерофосфолипиды и некоторые сфинголипиды (сфингомиелины).

Глицерофосфолипиды – производные L-глицеро-3-фосфата.

Глицеро-3-фосфат – соединение глицерина, в котором атом водорода замещён остатком азотной кислоты.

Цифра 3 означает, что остаток азотной кислоты присоединён к третьему атому углерода в молекуле глицерина.

Глицеро-3-фосфат может существовать в виде двух стереоизомеров (L и D).

Природные глицерофосфолипиды являются производными L-изомера.

Глицерофосфолипиды — главный липидный компонент клеточных мембран.

Среди глицерофосфолипидов наиболее распространены фосфатиды – сложноэфирные производные L- фосфатидовых кислот.

L- фосфатидовые кислоты представляют собой этерефицированный жирными кислотами по спиртовым гидроксильным группам L-глицеро-3-фосфат.

В молекуле L-фосфатидовых кислот остатки жирных кислот образуют эфирные связи с первым и вторым атомами углерода.

Примерами фосфатидов могут служить:

  • Фосфатидилсерины,
  • Фосфатидилэтаноламины,
  • Фосфатилхолины (лецитины).

Всё это соединения, в которых фосфатидовые кислоты этерефицированы по фосфатному гидроксилу серином, этаноламином и холином соответственно.

Плазмолагены – это глицерофосфолипиды, содержащие простую эфирную связь.

Они менее распространены по сравнению со сложноэфирными глицерофосфолипидами.

Плазмолагены содержат остаток винилового спирта, связанный простой эфирной связью с С1 L-глицеро-3-фосфата, как, напрмер, плазмогены с фрагментом этаноламина:

Плазмолагены составляют до 10% от общего количества липидов центральной нервной системы.

Сфинголипиды.

Сфинголипиды – структурные аналоги глицерофосфолипидов, где вместо глицерина используется сфингозин – насыщенный длинноцепочечный двухатомный аминоспирт.

Примером сфинголипидов служат церамиды.

Церамиды — это наиболее простые сфинголипиды. Они содержат только сфингозин, аминогруппа которого ацилирована жирной кислотой, или другими словами, соединена с жирнокислотным ацильным остатком.

АЦИЛИРОВАНИЕ — введение ацильной группы (ацила) RCO (остаток жирной кислоты) в молекулу органического соединения путем замещения атома водорода.

Важную группу сфинголипидов составляют сфингомиелины. В сфингомиелинах гидроксил у С1 ацилирован фосфорилхолиновой группировкой, поэтому их также можно отнести и к фосфолипидам.

Сфингомиелины были впервые обнаружены в нервной ткани.

Гликолипиды

Гликолипиды — соединения, построенные из липидного и углеводного фрагментов, соединенных ковалентной связью.

Типичные представители гликолипидов – цереброзиды и ганглиозиды – сфингосодержащие липиды (их можно поэтому считать сфинголипидами).

В цереброзидах остаток церамида связан с D-галактозой или D-глюкозой.

Ганглиозиды – богатые углеводами сложные липиды, впервые выделеные из серого вещества мозга.

В стуктурном отношении они сходны с цереброзидами, отличаясь тем, что вместо моносахарида они содержат сложный олигосахарид.

Напомним, что олигосахариды представляют собой углеводы, состоящие из нескольких моносахаридных остатков.

Сложные липиды – структурная основа клеточных мембран.

Характерная особенность сложных липидов – бифильность, обусловленная наличием неполярных гидрофобных и высокополярных ионизированных гидрофильных группировок.

В фосфатидилхолинах, например, углеводородные радикалы жирных кислот образуют два неполярных «хвоста», а карбоксильная, фосфатная и холиновые группы – полярную часть.

На границе раздела фаз такие соединения действуют как превосходные эмульгаторы.

В составе биомембран, ограничивающих живые клетки и их внутриклеточные органеллы, липидные компоненты обеспечивают высокое электрическое сопротивление мембраны, её непроницаемость для ионов и полярных молекул и проницаемость для неполярных веществ.

В частности, большинство анестезирующих препаратов отличается хорошей растворимостью в липидах, что позволяет им проникать через мембраны нервных клеток.

В состав клеточных мембран входят в основном белки и липиды, среди которых преобладают фосфолипиды, составляющие 40-90% от общего количества липидов в мембране.

Строение биомембраны интенсивно изучается в настоящее время. В одной из моделей клеточная мембрана рассматривается как липидный биослой. В таком биослое углеводородные хвосты липидов за счёт гидрофобных взаимодействий удерживаются друг возле друга в вытянутом состоянии во внутренней полости, образуя двойной углеводородный слой. Полярные группы липидов располагаются на внешней поверхности бислоя.

Дополнением рассмотренной модели является жидкостно-мозаичная модель биомембраны, предполагающая, что мембранные белки встроены в жидкую липидную бислойную основу таким образом, что их гидрофобные участки погружены во внутреннюю полость мембраны, а ионизированные остатки аминокислот находятся на её поверхности.

Источник: xn—-7sbb4aandjwsmn3a8g6b.xn--p1ai

Добавить комментарий

Adblock
detector