Липиды и белки которые содержаться в

Липиды

Строение

Липиды по химической природе – один из трёх типов жизненно важных органических веществ. Они практически не растворяются в воде, т.е. являются гидрофобными соединениями, но образуют с Н2О эмульсию. Липиды распадаются в органических растворителях – бензоле, ацетоне спиртах и т.д. По физическим свойствам жиры бесцветны, не имеют вкуса и запаха.

По строению липиды – соединения жирных кислот и спиртов. При присоединении дополнительных групп (фосфора, серы, азота) образуются сложные жиры. Жировая молекула обязательно включает атомы углерода, кислорода и водорода.

Жирные кислоты – алифатические, т.е. не содержащие циклических углеродных связей, карбоновые (группа -СООН) кислоты. Отличаются количеством группы -СН2-.
Выделяют кислоты:

  • ненасыщенные– включают одну или несколько двойных связей (-СН=СН-);
  • насыщенные– не содержат двойных связей между атомами углерода

Рис. 1. Строение жирных кислот.

В клетках запасаются в виде включений – капель, гранул, в многоклеточном организме – в форме жировой ткани, состоящей из адипоцитов – клеток, способных накапливать жиры.

Классификация

Липиды – сложные соединения, которые встречаются в различных модификациях и выполняют различные функции. Поэтому классификация липидов обширна и не ограничивается одним признаком. Наиболее полная классификация по строению приведена в таблице.

Общая характеристика

Нейтральные жиры. Относятся к сложным эфирам, состоящим из глицерина и жирных кислот. Различают моно-, ди- и триглицериды

Сложные эфиры жирных кислот и спиртов (одноатомных или двухатомных)

Образованы присоединением к липидам остатков фосфорной кислоты. Обширная группа, включающая две подгруппы:

Состоят из углеводов и липидов, образующие гидрофильно-гидрофобные комплексы

Описанные выше липиды относятся к омыляемым жирам – при их гидролизе образуется мыло. Отдельно в группу неомыляемых жиров, т.е. не взаимодействующих с водой, выделяют стероиды.
Они подразделяются на подгруппы в зависимости от строения:

  • стерины– стероидные спирты, входящие в состав животных и растительных тканей (холестерин, эргостерин);
  • желчные кислоты – производные холевой кислоты, содержащие одну группу -СООН, способствуют растворению холестерина и перевариванию липидов (холевая, дезоксихолевая, литохолевая кислоты);
  • стероидные гормоны – способствуют росту и развитию организма (кортизол, тестостерон, кальцитриол).

Рис. 2. Схема классификации липидов.

Отдельно выделяют липопротеины. Это сложные комплексы жиров и белков (аполипопротеинов). Липопротеины относят к сложным белкам, а не к жирам. В их состав входят разнообразные сложные жиры – холестерин, фосфолипиды, нейтральные жиры, жирные кислоты.
Выделяют две группы:

  • растворимые – входят в состав плазмы крови, молока, желтка;
  • нерастворимые– входят в состав плазмалеммы, оболочки нервных волокон, хлоропласты.

Рис. 3. Липопротеины.

Наиболее изучены липопротеины плазмы крови. Они различаются по плотности. Чем больше жиров, тем меньше плотность.

Липиды по физической структуре классифицируются на твёрдые жиры и масла. По нахождению в организме выделяют резервные (непостоянные, зависят от питания) и структурные (генетически обусловленные) жиры. По происхождению жиры могут быть растительными и животными.

Значение

Липиды должны поступать в организм вместе с пищей и участвовать в метаболизме. В зависимости от типа жиры выполняют в организме разнообразные функции:

  • триглицериды сохраняют тепло организма;
  • подкожный жир защищает внутренние органы;
  • фосфолипиды входят в состав мембран любой клетки;
  • жировая ткань является резервом энергии – расщепление 1 г жира даёт 39 кДж энергии;
  • гликолипиды и ряд других жиров выполняют рецепторную функцию – связывают клетки, получая и проводя сигналы, полученные из внешней среды;
  • фосфолипиды участвуют в свёртываемости крови;
  • воски покрывают листья растений, одновременно предохраняя их от высыхания и промокания.

Избыток или недостаток жиров в организме приводит к изменению обмена веществ и нарушению функций организма в целом.

Что мы узнали?

Жиры имеют сложное строение, классифицируются по разным признакам и выполняют разнообразные функции в организме. Липиды состоят из жирных кислот и спиртов. При присоединении дополнительных групп образуются сложные жиры. Белки и жиры могут образовывать сложные комплексы – липопротеины. Жиры входят в состав плазмалеммы, крови, ткани растений и животных, выполняют теплоизолирующую и энергетическую функции.

Источник: obrazovaka.ru

Липиды и их роль в жизнедеятельности клетки

На этом уроке мы продолжим изучение органических веществ. Мы рассмотрим один из основных компонентов клеток – липиды. Узнаем, на какие основные группы делятся липиды, а также их значение для жизнедеятельности клетки и организма в целом.

Липиды и их классификация

Липиды – это обширная группа жиров и жироподобных веществ, которые содержатся во всех живых клетках. Они неполярны и, следовательно, гидрофобны.

Читайте также:  Печень и холестерин питанием

Липиды практически не растворимы в воде, но хорошо растворимы в органических растворителях, например в эфире, бензоле, хлороформе.

В некоторых клетках липидов очень мало, всего несколько процентов, а в некоторых их содержание достигает 90 % (семена подсолнечника, подкожная жировая клетчатка).

По химическому строению липиды разнообразны. Однако настоящие липиды – это сложные эфиры высших жирных кислот и какого-либо спирта.

Липиды подразделяются на простые и сложные.

Простые липиды

К простым липидам относятся триацилглицеролы (нейтральные жиры) и воска (см. Рис. 1).

1. Нейтральные жиры – это самые распространенные липиды, встречающиеся в природе. Их молекулы образуются в результате присоединения трех остатков высокомолекулярных жирных кислот к одной молекуле трехатомного спирта глицерина.

Среди соединений этой группы различают жиры, остающиеся твердыми при температуре 20 °С, и масла, которые в этих условиях становятся жидкими.

2. Воска – это сложные эфиры, образуемые жирными кислотами и многоатомными спиртами. Они покрывают кожу, шерсть, перья животных, смягчая их и защищая их от воды. Также из восков пчёлы строят соты.

Рис. 1. Простые липиды

Значение нейтральных жиров

В организме животных, впадающих в спячку, накапливается большое количество жира, который расходуется во время спячки.

У позвоночных жир накапливается также в подкожной жировой клетчатке и служит теплоизоляцией. Особенно выражен подкожный слой у млекопитающих, живущих в холодном климате.

В растениях обычно накапливаются масла, а не жиры. Семена, плоды, хлоропласты богаты маслами. А некоторые семена, например семена кокосовой пальмы, клещевины, сои, подсолнечника, служат сырьем для получения масла промышленным способом.

Значение природных восков

Природные воска, такие как пчелиный воск и спермацет, нашли широкое применение в медицине и парфюмерной промышленности.

Спермацет, получаемый из головного мозга кашалота, хорошо всасывается в кожу и служит основой для приготовления различных мазей и кремов.

Пчелиный воск применяется в медицине для приготовления мазей, входит в состав питательных, отбеливающих, очищающих кремов и масок.

Сложные липиды

К сложным липидам относятся: фосфолипиды, гликолипиды, стероиды (см. Рис. 2).

Рис. 2. Сложные липиды

1. Фосфолипиды (см. Рис. 3) по своей структуре близки к нейтральным жирам, но в их молекуле один или два остатка жирных кислот замещены остатком фосфорной кислоты.

Рис. 3. Фосфолипиды

2. Гликолипиды образуются в результате соединения липидов с углеводами. Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга.

Стероиды и терпены

Стероиды и терпены – это липиды, не имеющие жирных кислот и имеющие особую структуру.

К стероидам относятся половые гормоны, например прогестерон и эстроген (женские половые гормоны), тестостерон (мужской половой гормон) (см. Рис. 4).

Рис. 4. Тестостерон

Также к стероидам относится витамин D, при недостатке которого возникает болезнь под названием рахит.

Терпены – вещества, от которых зависит аромат эфирных масел растений, например: ментола, мяты, камфары.

Функции липидов

1. Энергетическая

При полном окислении 1 г липидов выделяется 38,9 кДж энергии, то есть в 2 раза больше, чем при окислении 1 г углеводов.

2. Запасающая

Жиры являются основным запасающим веществом у животных, а также у некоторых растений. Они могут использоваться также в качестве источника воды (при окислении 1 г жира образуется более 1 г воды). Это особенно ценно для пустынных животных, обитающих в условиях дефицита воды.

3. Защитная

Обладая выраженными термоизоляционными свойствами, липиды защищают наш организм от температурных перепадов. Также липиды защищают организм от механических и физических воздействий.

Воска, которые покрывают тело растений, защищают их от излишнего испарения воды. Это очень важно для тех растений, которые живут в засушливых регионах в условиях дефицита влаги.

4. Структурная

В комплексе с белками липиды являются структурными компонентами всех биологических мембран.

5. Регуляторная

Липиды принимают участие в регуляции физиологических функций организма, так как некоторые из них являются гормонами.

Список литературы

  1. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
  2. Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
  3. Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
  4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.
Читайте также:  Как снизить быстро сахар и холестерин в

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

  1. Вопросы в конце параграфа 10 (стр. 39) – Каменский А.А., Криксунов Е.А., Пасечник В.В. «Общая биология», 10-11 класс (Источник)
  2. По какой причине может происходить отложение жиров в избыточном количестве?

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Источник: interneturok.ru

Липиды и белки которые содержаться в

Углеводы — это органические соединения, образованные тремя химическими элемента­ ми — углеродом, водородом и кислородом. Некоторые содержат также азот или серу. Общая формула углеводов — Сm(H2O)n.

Их делят на три основных класса: моносахариды, олигосахариды(дисахариды) и полисахариды.

Моносахариды — это простейшие углеводы, имеющие 3–10 атомов углерода. Большинство атомов углерода в молекуле моносахарида связано со спиртовыми группами, а один — с аль­дегидной или кетогруппой.

Глюкоза (виноградный сахар) встречается во всех организмах, в том числе в крови человека, поскольку является энергетическим резервом, входит в состав саха­розы, лактозы, мальтозы, крахмала, целлюлозы и других углеводов. Фруктоза (плодовый сахар) в наибольших кон­ центрациях содержится в плодах, меде, корнеплодах са­харной свеклы. Она не только принимает активное участие в процессах обмена веществ, но и входит в состав сахарозы.

Моносахариды — кристаллические вещества, сладкие на вкус и хорошо растворимые в воде.

К олигосахаридам относят углеводы, образованные не­ сколькими остатками моносахаридов. Они в основном так­ же кристаллические, хорошо растворимы в воде и сладки на вкус. В зависимости от количества этих остатков разли­ чают дисахариды (два остатка моносахаридов), трисахари­ ды (три) и т.д.

К дисахаридам относятся сахароза, лактоза и мальтоза. Сахароза (свекловичный или тростниковый са­ хар) состоит из остатков глюкозы и фруктозы , она в стречается в запасающих органах некоторых растений. Особенно много сахарозы в корне­ плодах сахарной свеклы и сахарного тростника, откуда их получают промышленным спосо­бом. Лактоза, или молочный сахар, образована остатками глюкозы и галактозы, содержится в материнском и коровьем молоке. Мальтоза (солодовый сахар) состоит из двух остатков глюкозы. Она образуется в процессе рас­щепления крахмала в семенах растений и в пи­щеварительной системе человека.

Полисахариды — это биополимеры, мономе­ рами которых являются остатки моносахаридов. К ним относятся крахмал, гликоген, целлюло­ за, хитин и др. Мономером этих полисахаридов является глюкоза.

Крахмал является основ­ ным запасным веществом растений, которое накапливается в семенах, плодах, клубнях, корневищах и других запасающих органах. Качественной реакцией на крахмал является реакция с йодом, при которой крахмал окрашивается в сине­фиолетовый цвет.

Гликоген (животный крахмал) — это запасной полисахарид животных и грибов, кото­рый у человека в наибольших количествах накапливается в мышцах и печени. Молекулы гликогена имеют более высокую степень ветвления, чем молекулы крахмала.

Целлюлоза, или клетчатка, — основной опорный полисахарид растений. Неразветвленные молекулы целлюлозы образуют пучки, которые входят в состав клеточ­ных стенок растений. Она используется в производстве тканей, бумаги, спирта и других органических веществ.

Хитин — это полисахарид, мономером которого является азотсодержащий моносахарид на основе глюкозы. Он входит в состав клеточных стенок грибов и панцирей членистоногих.

Полисахариды представляют собой порошкообразные вещества, которые несладки на вкус и нерастворимы в воде.

Видео YouTube


Источник: www.sites.google.com

Липиды и белки которые содержаться в

Внешние, или плазматические, мембраны многих клеток, а также мембраны ряда внутриклеточных органелл, например митохондрий и хлоропластов, удалось выделить в свободном виде и изучить их молекулярный состав. Во всех мембранах имеются полярные липиды в количестве, составляющем в зависимости от типа мембраны от 20 до 80% ее массы, остальное приходится главным образом на долю белков. Так, в плазматических мембранах животных клеток количество белков и липидов, как правило, примерно одинаково; во внутренней митохондриальной мембране содержится около 80% белков и только 20% липидов, а в миелиновых мембранах мозга, наоборот, около 80% липидов и только 20% белков. Липидная часть мембран представляет собой смесь различного рода полярных или амфипатических липидов В мембранах животных клеток присутствуют в основном фосфоглицериды и в меньшиу количествах – сфинголипиды. Триацилглицеролы обнаруживаются лишь в следовых количествах. Некоторые мембраны животных клеток, в особенности наружная плазматическая мембрана, содержат значительные количества холестерола и его эфиров. Для каждого типа мембран любой животной клетки характерен свой относительно постоянный липидный состав (табл. 12-5).

Читайте также:  Аспирин с и холестерин

Таблица 12-5. Примерный липидный состав (в процентах) субклеточных мембран печени крысы

Обратите внимание на высокий уровень холестерола и его эфиров, а также гликолипидов (значительную часть которых составляют ганглиозиды) в плазматической мембране.

Природные мембраны характеризуются очень малой толщиной (от 6 до 9 нм), эластичностью, а также тем, что они находятся в жидком состоянии. Через мембраны легко проходит вода, но они практически полностью непроницаемы для заряженных ионов типа или и для полярных, но не заряженных молекул, например сахаров. Только те полярные молекулы проникают через природные мембраны, для которых существуют специфические транспортные системы, или переносчики.

В то же время растворимые в липидах молекулы легко проходят через природные мембраны благодаря своей способности растворяться в углеводородном слое мембран. Как природные мембраны, так и полярные липидные бислои обладают высоким электрическим сопротивлением и потому являются хорошими изоляторами. Такое сходство свойств позволяет считать, что природные мембраны представляют собой сплошной, пластиноподобный полярный липидный бислой, в который включены многочисленные белки.

В различных мембранах на долю белков приходится от 20 до 80% массы. В мембране эритроцита, например, содержится около 20 различных белков, а во внутренней митохондриальной мембране их значительно больше. Некоторые белки в мембранах обладают ферментативной активностью, другие обеспечивают связывание и перенос молекул полярных веществ через мембраны. Мембранные белки различаются по характеру связи с мембранными структурами. Одни белки, называемые внешними, или периферическими, непрочно связаны с поверхностью мембраны; другие, называемые внутренними, или интегральными, – погружены внутрь мембраны и даже могут пронизывать ее насквозь (рис. 12-17). Периферические белки обычно легко экстрагируются из мембран, тогда как интегральные белки могут быть выделены только при помощи детергентов или органических растворителей.

Рис. 12-17. Мембранные белки. Периферические (внешние) белки легко отделяются от мембраны. тогда как интегральные мембранные белки плохо экстрагируются водными растворам.

Важную роль в изучении строения мембран сыграли методы химического анализа, но наряду с этим обширная информация была получена и при использовании электронной микроскопии (дополнение 12-1).

Дополнение 12-1. Электронная микроскопия мембран

В сочетании с разнообразными методами приготовления и окрашивания тканей электронная микроскопия позволила выявить много важных деталей в строении мембран. На приведенных ниже фотографиях видны три разных изображения плазматической мембраны эритроцита, полученные при электронной микроскопии препаратов, приготовленных тремя различными методами.

На рис. 1 показан вид плазматической мембраны эритроцита сбоку. Эта фотография, на которой видны две темные линии («железнодорожные пути») получена после фиксации клеток четырех-окисью осмия. Линии соответствуют наружному и внутреннему полярным слоям, состоящим из полярных голов мембранных липидов. Светлая зона между линиями соответствует гидрофобной части липидного бислоя, в которой находятся неполярные углеводородные цепи жирных кислот.

Рис. 2. Гликокаликс эритроцита. Эритроцит окружен наобычайно пышной оболочкой, толщина которой составляет около 140 нм. Она образована олигосахаридными нитями диаметром 1,5-2,5 нм.

Эта микрофотография получена методом трансмиссионной электронной микроскопии.

На рис. 2 показан гликокаликс (разд. 11.12) на внешней поверхности эритроцита, выявленный специальным методом окрашивания. Эта «пушистая оболочка» состоит из гидрофильных олигосахаридных групп гликопротеинов и гликолипидов, ее толщина – около 100 нм, что приблизительно в 10 раз превышает толщину липидного бислоя.

На рис. 3 и 4 показана внутренняя сторона мембраны эритроцита; электронная микрофотография на рис. 4 получена с использованием метода замораживания – скалывания. При приготовлении препаратов этим методом клетки сначала замораживают, а затем замороженный блок раскалывают. Иногда линия раскола проходит в плоскости между двумя липидными слоями (рис. 3). С обеих образующихся при этом поверхностей делают отпечатки, которые затем исследуют в электронном микроскопе (рис. 4). Внутренняя часть каждого из липидных слоев имеет гладкую поверхность; расположенные на ней скопления – это молекулы интегральных белков. Стрелкой показан внешний край скола.

При исследовании других особенностей строения мембран применяются также методы сканирующей электронной микроскопии [например, для изучения микроворсинок, расположенных на поверхности клеток (рис. 2-20, разд. 2-19)] и негативного контрастирования [для выявления крупных периферических белков, например, внутренней митохондриальной мембраны (гл. 17)].

Источник: scask.ru