Функции полярных липидов

Функции полярных липидов

Глава II. ЛИПИДЫ

§ 4. КЛАССИФИКАЦИЯ И ФУНКЦИИ ЛИПИДОВ

Липиды представляют собой неоднородную группу химических соединений, нерастворимых в воде, но хорошо растворимых в неполярных органических растворителях: хлороформе, эфире, ацетоне, бензоле и др., т.е. общим их свойством является гидрофобность (гидро – вода, фобия – боязнь). Из-за большого разнообразия липидов дать более точное определение им невозможно. Липиды в большинстве случаев являются сложными эфирами жирных кислот и какого-либо спирта. Выделяют следующие классы липидов: триацилглицерины, или жиры, фосфолипиды, гликолипиды, стероиды, воска, терпены. Различают две категории липидов – омыляемые и неомыляемые. К омыляемым относятся вещества, содержащие сложноэфирную связь (воска, триацилглицерины, фосфолипиды и др.). К неомыляемым относятся стероиды, терпены.

Триацилглицерины, или жиры

Триацилглицерины являются сложными эфирами трехатомного спирта глицерина

и жирных (высших карбоновых) кислот. Общая формула жирных кислот имеет вид: R-COOH, где R – углеводородный радикал. Природные жирные кислоты содержат от 4 до 24 атомов углерода. В качестве примера приведем формулу одной из наиболее распространенной в жирах стеариновой кислоты:

В общем виде молекулу триацилгицерина можно записать так:

Если в состав триациоглицерина входят остатки различных кислот (R1 R2 R3), то центральный атом углерода в остатке глицерина становится хиральным.

Триацилглицерины неполярны и вследствие этого практически нерастворимы в воде. Основная функция триацилглицеринов – запасание энергии. При окислении1 гжира выделяется 39 кДж энергии. Триацилглицерины накапливаются в жировой ткани, которая, кроме депонирования жира, выполняет термоизолирующую функцию и защищает органы от механических повреждений. Более подробную информацию о жирах и жирных кислотах вы найдете в следующем параграфе.

Интересно знать! Жир, которым заполнен горб верблюда, служит, в первую очередь, не источником энергии, а источником воды, образующейся при его окислении.

Фосфолипиды содержат гидрофобную и гидрофильную области и поэтому обладают амфифильнымы свойствами, т.е. они способны растворяться в неполярных растворителях и образовывать стойкие эмульсии с водой.

Фосфолипиды в зависимости от наличия в их составе спиртов глицерина и сфингозина делятся на глицерофосфолипиды и сфингофосфолипиды.

В основе строения молекулы глицерофосфолипидов лежит фосфатидная кислота, образованная глицерином, двумя жирными и фосфорной кислотами:

В молекулах глицерофосфолипидов к фосфатидной кислоте сложноэфирной связью присоединена НО-содержащая полярная молекула. Формулу глицерофосфолипидов можно представить так:

где Х – остаток НО-содержащей полярной молекулы (полярная группировка). Названия фосфолипидов образуются в зависимости от наличия в их составе той или иной полярной группировки. Глицерофосфолипиды, содержащие в качестве полярной группировки остаток этаноламина,

носят название фосфатидилэтаноламинов, остаток холина

Формула фосфатидилэтаноламина выглядит так:

Глицерофосфолипиды отличаются друг от друга не только полярными группами, но и остатками жирных кислот. В их состав входят как насыщенные (состоящие обычно из 16 – 18 атомов углерода), так и ненасыщенные (содержащие чаще 16 – 18 атомов углерода и 1 – 4 двойные связи) жирные кислоты.

Сфингофосфолипиды по составу сходны с глицерофосфолипидами, но вместо глицерина содержат аминоспирт сфингозин:

Наиболее распространенными сфингофосфолипидами являются сфингомиелины. Они образованы сфингозином, холином, жирной кислотой и фосфорной кислотой:

Молекулы как глицерофосфолипидов, так и сфингофосфолипидов состоят из полярной головы (образована фосфорной кислотой и полярной группировкой) и двух углеводородных неполярных хвостов (рис.1). У глицерофосфолипидов оба неполярных хвоста являются радикалами жирных кислот, у сфингофосфолипидов – один хвост является радикалом жирной кислоты, другой – углеводородной цепочкой спирта сфингазина.

Рис. 1. Схематическое изображение молекулы фосфолипида.

При встряхивании в воде фосфолипиды спонтанно формируют мицеллы, в которых неполярные хвосты собираются внутри частицы, а полярные головы располагаются на ее поверхности, взаимодействуя с молекулами воды (рис. 2а). Фосфолипиды способны образовывать также бислои (рис. 2б) и липосомы – замкнутые пузырьки, окруженные непрерывным бислоем (рис. 2в).

Рис. 2. Структуры, образуемые фосфолипидами.

Способность фосфолипидов, образовывать бислой, лежит в основе формирования клеточных мембран.

Гликолипиды

Гликолипиды содержат в своем составе углеводный компонент. К ним относятся гликосфинголипиды, содержащие, кроме углевода спирт, сфингозин и остаток жирной кислоты:

Они так же, как и фосфолипиды, состоят из полярной головы и двух неполярных хвостов. Гликолипиды располагаются на внешнем слое мембраны, являются составной частью рецепторов, обеспечивают взаимодействие клеток. Их особенно много в нервной ткани.

Стероиды

Стероиды являются производными циклопентанпергидрофенантрена (рис. 3). Один из важнейших представителей стероидов – холестерин. В организме он встречается как в свободном состоянии, так и в связанном, образуя сложные эфиры с жирными кислотами (рис. 3). В свободном виде холестерин входит в состав мембран и липопротеинов крови. Сложные эфиры холестерина являются его запасной формой. Холестерин является предшественником всех остальных стероидов: половых гормонов (тестостерон, эстрадиол и др.), гормонов коры надпочечников (кортикостерон и др.), желчных кислот (дезоксихолевая и др.), витамина D (рис. 3).

Читайте также:  Рецепторная теория атеросклероза

Интересно знать! В организме взрослого человека содержится около 140 г холестерина, больше всего его находится в нервной ткани и надпочечниках. Ежедневно в организм человека поступает 0,3 – 0,5 г холестерина, а синтезируется – до 1 г.

Воска

Воска – это сложные эфиры, образованные длинноцепочечными жирными кислотами (число атомов углерода 14 – 36) и длинноцепочечными одноатомными спиртами (число атомов углерода 16 – 22). В качестве примера рассмотрим формулу воска, образованного олеиновым спиртом и олеиновой кислотой:

Воска выполняют главным образом защитную функцию, находясь на поверхности листьев, стеблей, плодов, семян они защищают ткани от высыхания и проникновения микробов. Они покрывают шерсть и перья животных и птиц, предохраняя их от намокания. Пчелиный воск служит строительным материалом для пчел при создании сот. У планктона воск служит основной формой запасания энергии.

Терпены

В основе терпеновых соединений лежат изопреновые остатки:

К терпенам относятся эфирные масла, смоляные кислоты, каучук, каротины, витамин А, сквален. В качестве примера приведем формулу сквалена:

Сквален является основным компонентом секрета сальных желез.

Источник: ebooks.grsu.by

Большая Энциклопедия Нефти и Газа

Полярные липиды

Полярные липиды , состоящие из полярных голов и неполярных углеводородных хвостов, являются основными компонентами мембран. Из всех полярных липидов наиболее широко распространены фосфоглицериды. Фосфоглице-риды содержат две молекулы жирных кислот, образующие сложно-эфирные связи с двумя свободными гидроксильными группами глицерол-3 – фосфата, и еще одну молекулу спирта, гидроксиль-ная группа которого этерифицирована фосфорной кислотой. Этот остаток спирта представляет собой полярную голову всей молекулы фосфоглицерида, Фосфоглицериды отличаются друг от друга строением полярных голов. Наиболее распространенные фосфоглицериды-фосфатидилэтаноламин и фосфатидил-холин. [1]

Полярные липиды , к числу которых относятся только что рассмотренные фос-фоглицеролы, сфинголипиды и гликоли-пиды, не запасаются в жировых клетках, а встраиваются в клеточные мембраны, причем в строго определенных соотношениях. Фосфоглицеролы, синтезируемые ферментами эндоплазматическо-го ретикулума, встраиваются в основном в липидный бислой ретикулума. Общая площадь эндоплазматического ретикулума особенно велика в клетках печени и поджелудочной железы. Мембраны эндоплазматического ретикулума служат предшественниками мембран аппарата Гольджи. Эти пузырьки часто сливаются с плазматической мембраной. Фосфоглицеролы могут переноситься из эндоплазматического ретикулума в митохондрии также при помощи транспортных белков. Таким образом, в клетке существует поток вновь синтезированных полярных липидов, направленный к различным типам клеточных мембран. [3]

Полярные липиды рассматривают как динамические компоненты мембран, которые подвергаются процессам катаболизма и биосинтеза. [4]

Полярные липиды мембран , такие, как фосфолипиды и сфинголипиды, в организме животных не запасаются, но они также постоянно синтезируются для восполнения потерь, обусловленных разрушением мембран в ходе метаболических процессов. [5]

Более распространенные полярные липиды , вообще говоря, труднее поддающиеся разделению, все-таки можно разделить в области желательных значений Rf от 0 3 до 0 8 при продуманном выборе растворителей и адсорбентов. [6]

Все полярные липиды в мембранах постоянно обновляются в процессе метаболизма; при нормальных условиях в клетке устанавливается динамическое стационарное состояние, при котором скорость синтеза липидов равна скорости их распада. Расщепление липидов катализируется гидролитическими ферментами, способными расщеплять строго определенные ковалентные связи. Например, расщепление фосфатидилхолина, главного мембранного липида, происходит при помощи нескольких разных фосфолипаз. [8]

Некоторые полярные липиды движутся в подобных растворителях вблизи фронта, и их трудно отделить друг от друга. [9]

Ядро окружают полярные липиды . [10]

Триглицериды и менее полярные липиды ( см. рис. 70) обычно можно разделить в соответствии с длиной цепи и степенью ненасыщенности, применяя ледяную уксусную кислоту или ацетонитрил, которые содержат до 10 % воды. Хорошими растворителями для фракционирования слабо полярных классов липидов являются также смеси хлороформ – метанол с 5 % воды и смеси ацетона или метилэтилкетона с ацетонитрилом. Для разделения полярных липидов в соответствии с длиной цепи и степенью ненасыщенности пригодна смесь: ледяная уксусная кислота – ацетонитрил, а также смеси ледяной уксусной кислоты и ацетонитрила или тетрагидрофурана с 10 – 50 % воды. Сильно полярные липиды, например алкилсульфаты или четвертичные аммонийные основания, фракционируют на целлюлозе с водным этанолом в качестве растворителя. [11]

Ключевыми компонентами биологических мембран являются полярные липиды ( см. рис. 20, Б), в основном фосфолипиды. У большинства бактерий в их состав входят две жирные кислоты обычно с 16 – 18 атомами углерода в цепочке и с насыщенными или одной ненасыщенной связями. Состав жирных кислот бактерий может варьировать в ответ на изменения окружающей среды, особенно температуры. При понижении температуры в составе фос-фолипидов увеличивается количество ненасыщенных жирных кислот, что в значительной степени отражается на текучести мембраны при низких температурах. [13]

Читайте также:  Повышенный холестерин диета беременной

На поверхности раздела двух водных фаз полярные липиды легко и самопроизвольно формируют очень тонкие бислои. В таких структурах углеводородные хвосты липидных молекул направлены внутрь от обращенных к каждой из фаз поверхностей и образуют внутренний непрерывный углеводородный слой, а располагающиеся снаружи гидрофильные головы оказываются погруженными в водный раствор. В зависимости от природы содержащихся в них жирных кислот фосфолипидные бислои имеют толщину от 6 до 7 нм, они лишены жесткости, находятся в жидком состоянии и легко могут изгибаться. [15]

Источник: www.ngpedia.ru

Функции полярных липидов

К полярным липидам относятся фосфо- и гликолипиды.

Фосфолипиды. Относятся к классу сложных липидов и являются производными ацилглицеролов, в которых одна из жирных кислот замещена фосфорной кислотой с присоединенным к ней азотистым основанием.

Общая формула глицерофосфолипидов:

где R1, R2 — остатки насыщенных или ненасыщенных жирных кислот; В — остаток азотистого основания, или аминокислоты, или Н + .

Из азотистых оснований, входящих в состав фосфолипидов, наибольшее распространение получил аминоспирт холин – сильное основание, легкорастворимое в воде и спирте, но нерастворимое в эфире. Его можно рассматривать как производное NН4ОН, в молекуле которого три атома водорода замещены метильными группами —СН3, а четвертый атом — остатком этилового спирта:

Холин играет важную роль в обмене веществ, так как под действием соответствующих ферментов он может передавать содержащиеся в нем метильные группы другим веществам. Фосфолипиды, содержащие холин, называются фосфатидилхолином (лецитином). Существуют также фосфатидилэтаноламины, которые вместо холина содержат этаноламин СН2ОН — СН22, и фосфатидилсерины, содержащие аминокислоту серин . В семенах масличных растений обнаружены также фосфолипиды, у которых замещающая группа состоит из глицерола, из двух и более дисахаридов; известны фосфатидилинозитолы, содержащие спирт миоинозит. Особую группу составляют фосфолипиды, у которых вместо глицерола содержится аминоспирт сфингозин (сфингофосфолипиды).

Фосфолипиды, не содержащие азотистого основания, носят название фосфатидных кислот. Они содержатся в растениях в виде солей металлов (чаще всего кальциевых или магниевых).

Жирнокислотный состав фосфолипидов отличается большей насыщенностью по сравнению с жирнокислотным составом ТАГ соответствующего масла. Чистые фосфолипиды представляют собой белые воскообразные вещества, желтеющие на воздухе в результате окисления ненасыщенных жирных кислот. Они хорошо растворимы в большинстве неполярных органических растворителей и масле.

Молекулы фосфолипидов обладают выраженной полярностью. Тот конец молекулы, где расположен остаток азотистого основания и который обладает гидрофильными свойствами, называют «головой». Остальную часть молекулы, на которой располагаются остатки жирных кислот, называют «хвосты». «Хвосты» обладают гидрофобными свойствами (рис. 2, в).

Благодаря этому фосфолипиды в растворах образуют слоистые структуры, которые играют очень важную роль в построении структур протоплазмы — клеточных биомембран. Фосфолипиды — природные антиоксиданты, они предохраняют масла от окисления, легко окисляясь сами.

Наибольшее количество фосфолипидов содержится в семенах сои — 1,5. 2,0 % массы семян. В промышленных растительных маслах содержание фосфолипидов колеблется в зависимости от условий, при которых было получено масло. Наибольшее их количество содержится в экстракционном масле. Для выделения фосфолипидов из растительных масел их подвергают гидратации — обработке небольшим количеством воды. Гидратируясь, фосфолипиды теряют способность растворяться в масле и выпадают в осадок.

Фосфолипиды как эмульгаторы широко применяются в пищевой промышленности при изготовлении шоколада, маргарина, майонеза и в качестве веществ, предохраняющих жиры от окисления и порчи.

Гликолипиды. В качестве спирта гликолипиды содержат или глицерол, или сфингозин, один или несколько моносахаридных остатков, остатки жирных кислот и не содержат остатка фосфорной кислоты.

Источник: studopedia.ru

Функции липидов

Липиды выступают важнейшим источником энергетического запаса организма. Факт очевиден даже на номенклатурном уровне: греческое «липос» переводится как жир. Соответственно, категория липидов объединяет жироподобные вещества биологического происхождения. Функционал соединений достаточно разнообразен, что обусловлено неоднородностью состава данной категории био-объектов.

Какие функции выполняют липиды

Перечислите основные функции липидов в организме, которые являются основными. На ознакомительном этапе целесообразно выделить ключевые роли жироподобных веществ в клетках организма человека. Базовый перечень – это пять функций липидов:

  1. резервно-энергетическая;
  2. структурообразующая;
  3. транспортная;
  4. изолирующая;
  5. сигнальная.

К второстепенным задачам, которые липиды выполняют в сочетании с другими соединениями можно отнести регуляторную и ферментативную роль.

Энергетический запас организма

Это не только одна из важных, но приоритетная роль жироподобных соединений. По сути, часть липидов является.источником энергии всей клеточной массы. Действительно, жир для клеток – аналог топлива в баке автомобиля. Реализуется энергетическая функция липидами следующим образом. Жиры и подобные им вещества окисляются в митохондриях, расщепляясь до уровня воды и двуокиси углерода. Процесс сопровождается выделением значительного количества АТФ – высокоэнергетических метаболитов. Их запас позволяет клетке участвовать в энергозависимых реакциях.

Читайте также:  Из холестерина образуется

Структурные блоки

Одновременно, липиды осуществляют строительную функцию: с их помощью формируется мембрана клетки. В процессе участвуют следующие группы жироподобных веществ:

  1. холестерин – липофильный спирт;
  2. гликолипиды – соединения липидов с углеводами;
  3. фосфолипиды – эфиры сложных спиртов и высших карбоновых кислот.

Следует отметить, что в сформировавшейся мембране, непосредственно жиры не содержатся. Образовавшаяся стенка между клеткой и внешней средой оказывается двухслойной. Это достигается вследствие бифильности. Подобная характеристика липидов указывает, что одна часть молекулы – гидрофобна, то есть нерастворима в воде, вторая, напротив – гидрофильна. Как результат, бислой клеточной стенки формируется вследствие упорядоченного расположения простых липидов. Молекулы разворачиваются гидрофобными участками друг к другу, тогда как гидрофильные хвосты направлены внутрь и вне клетки.

Это определяет защитные функции мембранных липидов. Во-первых, мембрана придает клетке форму и даже сохраняет ее. Во-вторых, двойная стенка – своеобразный пункт паспортного контроля, не пропускающий через себя нежелательных визитеров.

Автономная система отопления

Конечно, это наименование достаточно условно, но вполне применимо, если рассматривать какие функции выполняют липиды. Соединения не столько отапливают организм сколько удерживают тепло внутри. Подобная роль отведена жировым отложениям, формирующимся вокруг различных органов и в подкожной ткани. Этот класс липидов характеризуется высокими теплоизолирующими свойствами, что предохраняет жизненно-важные органы от переохлаждения.

«Золотой» запас индивидуума

Дополнительно, жировые отложения выполняют резервную функцию. Это фактически кладезь энергии, используемый организмом при необходимости, Как пример, голодание или интенсивные физические нагрузки. Весь механизм осуществляется при содействии адипоциты. Это специальные клетки, строение и функции которых тесно связаны с триглицеридами. Жир занимает подавляющий объем адипоцитов.

Такси заказывали?

Транспортную роль липидов относят к второстепенной функции. Действительно, перенос веществ (преимущественно триглицеридов и холестерина) осуществляется отдельными структурами. Это связанные комплексы липидов и белков, именуемые липопротеины. Как известно, жироподобные вещества нерастворимы в воде, соответственно плазме крови. Напротив, функции белков включают гидрофильность. Как результат, ядро липопротеида – скопление триглицеридов и эфиров холестерина, тогда как оболочка – смесь молекул протеина и свободного холестерола. В таком виде, липиды доставляются к тканям или обратно в печень для вывода из организма.

Второстепенные факторы

Список уже перечисленных 5 функций липидов, дополняет ряд не менее важных ролей:

Сигнальная функция

Некоторые сложные липиды, в частности их строение, позволяют передавать нервные импульсы между клетками. Посредником в подобном процесс выступают гликолипиды. Не менее важным оказывается способность распознавать внутриклеточные импульсы, также реализуемая жироподобными структурами. Это позволяет отбирать из крови необходимые клетке вещества.

Ферментативная функция

Липиды, независимо от расположения в мембране или вне ее – не входят в состав ферментов. Однако, их биоснтез происходит с присутствием жироподобных соединений. Дополнительно, липиды участвуют в выполнении защиты стенок кишечника от ферментов поджелудочной железы. Избыток последних нейтрализуется желчью, где в значительных количествах включены холестерин и фосфолипиды.

Регуляторная функция

Еще одна роль, которую для называют второстепенной. Не участвуя непосредственно в регулирующих процессах, липиды входят в состав соединений, осуществляющих подобные функции. В частности, это мембрана клетки, выполняющая пропускной режим. Другим примером выступают стероидные гормоны, регулирующие обмен веществ, репродуктивную способность, и иммунную защиту организма.

Перечень функций липидов не ограничивается рассмотренными случаями, но позволяет понять уровень важности веществ для человека.

Окисление липидов в организме – это различные типы реакций, которые имеют как положительные, так и отрицательные последствия для человеческого организма.

Синтез липидов – этот процесс не может начинаться сразу после поступления жиров в желудок или кишечник. Для этого необходим процесс всасывания, который имеет свои особенности.

Соединения липидов – это обширный класс химических элементов, включающий жиры, воски, определенные гормональные вещества. Их невозможно растворить в воде.

Синтез липидов – этот процесс не может начинаться сразу после поступления жиров в желудок или кишечник. Для этого необходим процесс всасывания, который имеет свои особенности.

Источник: sosudportal.ru