Бета окисление липидов

Бета окисление липидов

166-167

Деградация жирных кислот: β-окисление

А. Деградация жирных кислот: β-окисление

После попадания в клетки жирные кислоты активируются путем образования ацил-КоА Для этого нужны две богатые энергией ангидридные связи АТФ (см. с. 112). В матрикс митохондрий активированные жирные кислоты попадают в виде ацилкарнитина, который является трансмембранным переносчиком (см. с. 214).

Деградация жирных кислот происходит в митохондриальном матриксе путем окислительного цикла реакций, при котором последовательно отщепляются С 2 -звенья в виде ацетил-КоА ( активированной уксусной кислоты ). Последовательное отщепление ацетильных групп начинается с карбоксильного конца активированных жирных кислот каждый раз между С-2 (α-атомом) и С-3 (β-атомом). Поэтому цикл реакций деградации называется β-окислением . Пространственно и функционально β-окисление тесно связано с цитратным циклом (см. с. 140) и дыхательной цепью (см. с. 142).

Первая стадия β-окисления — дегидрирование активированной жирной кислоты ( ацил-КоА ) с образованием β-ненасыщенной жирной кислоты с двойной связью в транс -конфигурации (реакция [ 1 ]: дегидрирование ). При этом оба атома водорода с электронами переносятся от фермента [ 1 ] на электронпереносящий флавопротеин (ETF) . ETF-дегидрогеназа ( 5 ) переносит восстановительные эквиваленты на убихинон (кофермент Q), который является составной частью дыхательной цепи (см. рис. 143). Вторая стадия деградации жирной кислоты состоит в присоединении молекулы воды к двойной связи ненасыщенной жирной кислоты (реакция [ 2 ]: гидратирование ). На третьей стадии происходит окисление гидроксильной группы при С-3 в карбонильную группу (реакция [ 3 ]: дегидрирование ). Акцептором для восстановительных эквивалентов является НАД + который передает их в дыхательную цепь . На четвертой стадии активированная β-кетокислота расщепляется ацилтрансферазой (β-кетотиолазой) в присутствии кофермента А (реакция [ 4 ]: тиолитическое расщепление ). Продуктами реакции являются ацетил-КоА и активированная жирная кислота, углеродная цепь которой короче на два углеродных атома по сравнению с длиной цепи исходной жирной кислоты.

Для полной деградации длинноцепочечной жирной кислоты цикл должен многократно повторяться; например, для стеарил-КоА (18:0) необходимы восемь циклов. Образующийся ацетил-КоА может переноситься на оксалоацетат с образованием цитрата, промежуточного метаболита цитратного цикла (см. с. 140). При избытке ацетил-КоА в печени образуются кетоновые тела (см. с. 304).

Б. Энергетический баланс деградации жирных кислот

Для расчета энергетического баланса деградации жирной кислоты в качестве примера рассмотрим молекулу пальмитиновой кислоты (16:0), которая окисляется полностью до 16 молекул СО 2 . На первой стадии жирная кислота активируется, потребляя две богатые энергией связи [АТФ (АТР)], с образованием пальмитоил-СоА состоящего из восьми C 2 -звеньев. Затем протекают семь циклов β-окисления. При этом образуются 7 молекул восстановленной формы флавопротеина (ETF) и 7 молекул НАДН + Н + . Оба соединения включаются в дыхательную цепь; окисление ETF через убихинон дает в итоге 1,5 молекулы АТФ, а НАДН + Н + — 2,5 молекулы (см. рис. 143). Таким образом, β-окисление одного пальмитоильного остатка дает 28 молекул (7 х 4) АТФ. Окисление каждой молекулы ацетил-КоА приводит к образованию 10 молекул АТФ, что означает получение еще 80 молекул (8 x 10) АТФ. Из 28 + 80 молекул АТФ следует вычесть две молекулы АТФ, израсходованные при активации пальмитиновой кислоты (см. выше). Итак, при утилизации одной молекулы пальмитиновой кислоты синтезируются 106 молекул АТФ, что соответствует свободной энергии 3300 кДж/моль (106 х 30,5 кДж/моль АТФ). Выигрыш в энергии при деградации жирных кислот существенно выше по сравнению с распадом углеводов (32 молекулы АТФ на 1 молекулу глюкозы) и белков даже с учетом больших размеров молекул. Поэтому жиры представляют собой очень выгодную форму сохранения энергии.

Источник: www.chem.msu.su

ОКИСЛЕНИЕ ЖИРНЫХ КИСЛОТ

Установлено, что окисление жирных кислот протекает в печени, почках, скелетных и сердечной мышцах, в жировой ткани. В мозговой ткани скорость окисления жирных кислот весьма незначительна; основным источником энергии в мозговой ткани служит глюкоза.

В 1904 г. Ф. Кнооп (F. Knoop) выдвинул гипотезу β-окисления жирных кислот на основании опытов по скармливанию собакам различных жирных кислот, в которых один атом водорода в концевой метильной группе (ω-углеродного атома) был замещен радикалом (С6Н5–).

Ф. Кнооп высказал предположение, что окисление молекулы жирной кислоты в тканях организма происходит в β-положении. В результате от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты со стороны карбоксильной группы.

Жирные кислоты, входящие в состав естественных жиров животных и растений, имеют четное число углеродных атомов. Любая такая кислота, от которой отщепляется по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты. После очередного β-окисления масляная кислота становится ацетоуксусной. Последняя затем гидроли-зуется до двух молекул уксусной кислоты. Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот.

Доставка жирных кислот к месту их окисления – к митохондриям – происходит сложным путем: при участии альбумина осуществляется транспорт жирной кислоты в клетку; при участии специальных белков (fatty acid binding proteins, FABP) – транспорт в пределах цитозоля; при участии карнитина – транспорт жирной кислоты из цитозоля в митохондрии.

Читайте также:  Омега 3 производство сша

Процесс окисления жирных кислот складывается из следующих основных этапов.

Активация жирных кислот. Свободная жирная кислота независимо от длины углеводородной цепи является метаболически инертной и не может подвергаться никаким биохимическим превращениям, в том числе окислению, пока не будет активирована. Активация жирной кислоты протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима A (HS-KoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Считают, что активация жирной кислоты протекает в 2 этапа. Сначала жирная кислота реагирует с АТФ с образованием ациладенилата, представляющим собой эфир жирной кислоты и АМФ. Далее сульфгидрильная группа КоА действует на прочно связанный с ферментом ациладенилат с образованием ацил-КоА и АМФ.

Транспорт жирных кислот внутрь митохондрий. Коэнзимная форма жирной кислоты, в равной мере как и свободные жирные кислоты, не обладает способностью проникать внутрь митохондрий, где, собственно, и протекает их окисление. Переносчиком активированных жирных кислот

с длинной цепью через внутреннюю митохондриальную мембрану служит карнитин. Ацильная группа переносится с атома серы КоА на гидроксильную группу карнитина с образованием ацилкарнитина, который диффундирует через внутреннюю митохондриальную мембрану:

Реакция протекает при участии специфического цитоплазматического фермента карнитин-ацилтрансферазы. Уже на той стороне мембраны, которая обращена к матриксу, ацильная группа переносится обратно на КоА, что термодинамически выгодно, поскольку О-ацильная связь в кар-нитине обладает высоким потенциалом переноса группы. Иными словами, после прохождения ацилкарнитина через мембрану митохондрий происходит обратная реакция – расщепление ацилкарнитина при участии HS-KoA и митохондриальной карнитин-ацилтрансферазы:

Внутримитохондриальное окисление жирных кислот. Процесс окисления жирной кислоты в митохондриях клетки включает несколько последовательных энзиматических реакций.

Первая стадия дегидрирования. Ацил-КоА в митохондриях прежде всего подвергается ферментативному дегидрированию, при этом ацил-КоА теряет 2 атома водорода в α- и β-положениях, превращаясь в КоА-эфир ненасыщенной кислоты. Таким образом, первой реакцией в каждом цикле распада ацил-КоА является его окисление ацил-КоА-де-гидрогеназой, приводящее к образованию еноил-КоА с двойной связью между С-2 и С-3:

Существует несколько ФАД-содержащих ацил-КоА-дегидрогеназ, каждая из которых обладает специфичностью по отношению к ацил-КоА с определенной длиной углеродной цепи.

Стадия гидратации. Ненасыщенный ацил-КоА (еноил-КоА) при участии фермента еноил-КоА-гидратазы присоединяет молекулу воды. В результате образуется β-оксиацил-КоА (или 3-гидроксиацил-КоА):

Заметим, что гидратация еноил-КоА стереоспецифична, подобно гидратации фумарата и аконитата (см. с. 348). В результате гидратации транс-Δ 2 -двойной связи образуется только L-изомер 3-гидроксиацил-КоА.

Вторая стадия дегидрирования. Образовавшийся β-оксиацил-КоА (3-гидроксиацил-КоА) затем дегидрируется. Эту реакцию катализируют НАД + -зависимые дегидрогеназы:

Тиолазная реакция. В ходе предыдущих реакций происходило окисление метиленовой группы при С-3 в оксогруппу. Тиолазная реакция представляет собой расщепление 3-оксоацил-КоА с помощью тиоловой группы второй молекулы КоА. В результате образуется укороченный на два углеродных атома ацил-КоА и двууглеродный фрагмент в виде ацетил-КоА. Данная реакция катализируется ацетил-КоА-ацилтрансферазой (β-ке-тотиолазой):

Образовавшийся ацетил-КоА подвергается окислению в цикле трикар-боновых кислот, а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-КоА (рис. 11.2). Например, при окислении пальмитиновой кислоты (С16) повторяется 7 циклов β-окисления. Запомним, что при окислении жирной кислоты, содержащей п углеродных

Рис. 11.2. Окисление жирной кислоты («спираль Линена»). Подробно представлен первый цикл окисления — укорочение цепи жирной кислоты на два углеродных атома. Остальные циклы аналогичны первому (по А.Н. Климову и Н.Г. Никульче-вой).

1 — ацил-КоА-дегидрогеназа (КФ 1.3.99.3) ; 2 — еноил-КоА-гидратаза (КФ 4.2.1.17.); 3 — β-гидро-ксиацил-КоА-дегидрогеназа (КФ 1.1.1.35); 4 — тиолаза (КФ 2.3.1.9).

атомов, происходит n/2–1 цикл β-окисления (т.е. на один цикл меньше, чем n/2, так как при окислении бутирил-КоА сразу происходит образование 2 молекул ацетил-КоА) и всего получится п/2 молекул ацетил-КоА. Следовательно, суммарное уравнение β-окисления активированной кислоты можно записать так:

Пальмитоил-КоА + 7ФАД + 7НАД + + 7Н2O + 7HS-KoA –>

–> 8Ацетил-КоА + 7ФАДН2 + 7НАДН + 7Н + .

Баланс энергии. При каждом цикле β-окисления образуются одна молекула ФАДН2 и одна молекула НАДН. Последние в процессе окисления в дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН2 – 2 молекулы АТФ и НАДН – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5 х 7 = 35 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле трикарбоновых кислот, дает 12 молекул АТФ, а 8 молекул ацетил-КоА дадут 12 х 8 = 96 молекул АТФ.

Таким образом, всего при полном β-окислении пальмитиновой кислоты образуется 35 + 96 = 131 молекула АТФ. С учетом одной молекулы АТФ, потраченной в самом начале на образование активной формы пальмитиновой кислоты (пальмитоил-КоА), общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131 – 1 = 130 молекул АТФ. Изменение свободной энергии ΔF при полном сгорании 1 моля пальмитиновой кислоты составляет 2338 ккал, а богатая энергией фосфатная связь АТФ характеризуется величиной 7,6 ккал/моль. Нетрудно подсчитать, что примерно 990 ккал (7,6 х 130), или 42% от всей потенциальной энергии пальмитиновой кислоты при ее окислении в организме, используется для ресинтеза АТФ, а оставшаяся часть, очевидно, теряется в виде тепла.

Читайте также:  Сбор трав для очищения сосудов

Следовательно, эффективность накопления энергии в результате окисления жирных кислот при стандартных условиях составляет

Источник: www.xumuk.ru

Для окисления жирных кислот существует свой путь

Окисление жирных кислот (β-окисление)

Для преобразования энергии, заключенной в жирных кислотах, в энергию связей АТФ существует метаболический путь окисления жирных кислот до СО2 и воды, тесно связанный с циклом трикарбоновых кислот и дыхательной цепью. Этот путь называется β-окисление, т.к. происходит окисление 3-го углеродного атома жирной кислоты (β-положение) в карбоксильную группу, одновременно от кислоты отщепляется ацетильная группа, включающая С 1 и С 2 исходной жирной кислоты.

Элементарная схема β-окисления

Реакции β-окисления происходят в митохондриях большинства клеток организма (кроме нервных клеток). Для окисления используются жирные кислоты, поступающие в цитозоль из крови или появляющиеся при липолизе собственных внутриклеточных ТАГ. Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

Пальмитоил-SКоА + 7ФАД + 7НАД + + 7Н2O + 7HS-KoA → 8Ацетил-SКоА + 7ФАДН2 + 7НАДН

Этапы окисления жирных кислот

1. Прежде, чем проникнуть в матрикс митохондрий и окислиться, жирная кислота должна активироваться в цитозоле. Это осуществляется присоединением к ней коэнзима А с образованием ацил-SКоА. Ацил-SКоА является высокоэнергетическим соединением. Необратимость реакции достигается гидролизом дифосфата на две молекулы фосфорной кислоты.

Реакция активации жирной кислоты

2. Ацил-SКоА не способен проходить через митохондриальную мембрану, поэтому существует способ переноса жирной кислоты в комплексе с витаминоподобным веществом карнитином (витамин В11). На наружной мембране митохондрий имеется фермент карнитин-ацилтрансфераза I.

Карнитин-зависимый транспорт жирных кислот в митохондрию

3. После связывания с карнитином жирная кислота переносится через внутреннюю митохондриальную мембрану транслоказой . На внутренней стороне этой мембраны фермент карнитин-ацилтрансфераза II вновь образует ацил-SКоА, который вступает на путь β-окисления.

4. Процесс собственно β-окисления состоит из 4-х реакций, повторяющихся циклически. В них последовательно происходит окисление (ацил-SКоА-дегидрогеназа), гидратирование (еноил-SКоА-гидратаза) и вновь окисление 3-го атома углерода (гидроксиацил-SКоА-дегидрогеназа). В последней, трансферазной, реакции от жирной кислоты отщепляется ацетил-SКоА . К оставшейся (укороченной на два углерода) жирной кислоте присоединяется HS-КоА, и она возвращается к первой реакции. Все повторяется до тех пор, пока в последнем цикле не образуются два ацетил-SКоА.

Последовательность реакций β-окисления жирных кислот

Расчет энергетического баланса β-окисления

Ранее при расчете эффективности окисления коэффициент P/O для НАДH принимался равным 3,0, для ФАДH2 – 2,0.

По современным данным значение коэффициента P/O для НАДH соответствует 2,5, для ФАДH2 – 1,5.

При расчете количества АТФ, образуемого при β-окислении жирных кислот необходимо учитывать:

  • количество образуемого ацетил-SКоА – определяется обычным делением числа атомов углерода в жирной кислоте на 2.
  • число циклов β-окисления . Число циклов β-окисления легко определить исходя из представления о жирной кислоте как о цепочке двухуглеродных звеньев. Число разрывов между звеньями соответствует числу циклов β-окисления. Эту же величину можно подсчитать по формуле (n/2 -1), где n – число атомов углерода в кислоте.
  • число двойных связей в жирной кислоте. В первой реакции β-окисления происходит образование двойной связи при участии ФАД. Если двойная связь в жирной кислоте уже имеется, то необходимость в этой реакции отпадает и ФАДН2 не образуется. Количество недополученных ФАДН2 соответствует числу двойных связей. Остальные реакции цикла идут без изменений.
  • количество энергии АТФ , потраченной на активацию (всегда соответствует двум макроэргическим связям).

Источник: biokhimija.ru

Бета окисление липидов

Кнооп в 1904 г. выдвинул гипотезу β-окисления жирных кислот на основании опытов по скармливанию кроликам различных жирных кислот, в которых один атом водорода в концевой метальной группе (у ω-углеродного атома) был замещен фенильным радикалом (С6Н5-).

Кнооп высказал предположение, что окисление молекулы жирной кислоты в тканях организма происходит в β-положении; в результате происходит последовательное отсечение от молекулы жирной кислоты двууглеродных фрагментов со стороны карбоксильной группы.

Жирные кислоты, входящие в состав естественных жиров животных и растений, принадлежат к ряду с четным числом углеродных атомов. Любая такая кислота, отщепляя по паре углеродных атомов, в конце концов проходит через стадию масляной кислоты, которая после очередного β-окисления должна дать ацетоуксусную кислоту. Последняя затем гидролизуется до двух молекул уксусной кислоты.

Теория β-окисления жирных кислот, предложенная Кноопом, не потеряла своего значения и до настоящего времени и является в значительной мере основой современных представлений о механизме окисления жирных кислот.

Современные представления об окислении жирных кислот

Установлено, что окисление жирных кислот в клетках происходит в митохондриях при участии мультиферментного комплекса. Известно также, что жирные кислоты первоначально активируются при участии АТФ и HS-KoA; субстратами на всех последующих стадиях ферментативного окисления жирных кислот служат КоА-эфиры этих кислот; выяснена также роль карнитина в транспорте жирных кислот из цитоплазмы в митохондрии.

Процесс окисления жирных кислот складывается из следующих основных этапов.

Активация жирных кислот и их проникновение из цитоплазмы в митохондрии. Образование «активной формы» жирной кислоты (ацил-КоА) из коэнзима А и жирной кислоты является эндергоническим порцессом протекающим за счет использования энергии АТФ:

Читайте также:  Омакор как снижение холестерина

Реакция катализируется ацил-КоА-синтетазой. Существует несколько таких ферментов: один из них катализирует активацию жирных кислот, содержащих от 2 до 3 углеродных атомов, другой- от 4 до 12 атомов, третий — от 12 и более атомов углерода.

Как уже отмечалось, окисление жирных кислот (ацил-КоА) происходит в митохондриях. В последние годы было показано, что способность ацил-КоА проникать из цитоплазмы в митохондрии резко возрастает в присутствии азотистого основания — карнитина (γ-триметиламино-β-гидроксибутирата). Ацил-КоА, соединяясь с карнитином, при участии специфического цитоплазматического фермента (карнитин-ацил-КоА-трансферазы) образует ацилкарнитин (эфир карнитина и жирной кислоты), который обладает способностью проникать внутрь митохондрии:

После прохождения ацилкарнитина через мембрану митохондрии происходит обратная реакция — расщепление ацилкарнитина при участии HS-KoA и митохондриальной карнитин-ацил-КоА-трансферазы:

При этом карнитин возвращается в цитоплазму клетки, а ацил-КоА подвергается в митохондриях окислению.

Первая стадия дегидрирования. Ацил-КоА в митохондриях прежде всего подвергается ферментативному дегидрированию;

при этом ацил-КоА теряет два атома водорода в α- и β-положении, превращаясь в КоА-эфир ненасыщенной кислоты:

По-видимому, существует несколько ФАД-содержащих ацил-КоА-дегидрогеназ, каждая из которых обладает специфичностью по отношению к ацил-КоА с определенной длиной углеродной цепи.

Стадия гидратации. Ненасыщенный ацил-КоА (еноил-КоА) при участии фермента еноил-КоА-гидратазы присоединяет молекулу воды. В результате образуется β-гидроксиацил-КоА:

Вторая стадия дегидрирования. Образовавшийся β-гидроксиацил-КоА затем дегидрируется. Эту реакцию катализируют НАД-зависимые дегидрогеназы. Реакция протекает по следующему уравнению:

Тиолазная реакция. В этой реакции β-кетоацил-КоА взаимодействует с коэнзимом А. В результате происходит расщепление β-кетоацил-КоА и образуется укороченный на два углеродных атома ацил-КоА и двууглеродный фрагмент в виде ацетил-КоА. Данная реакция катализируется ацетил-КоА-ацилтрансфе-разой (или тиолазой):

Образовавшийся ацетил-КоА подвергается окислению в цикле трикарбоновых кислот (цикле Кребса), а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до двух молекул ацетил-КоА (см. схему).

Например, в случае пальмитиновой кислоты (С16) повторяются 7 циклов окисления. Запомним, что при окислении жирной кислоты, содержащей n углеродных атомов, происходит n/2 — 1 циклов β-окисления (т. е. на один цикл меньше, чем n/2 , так как при окислении бутирил-КоА сразу происходит образование двух молекул ацетил-КоА) и всего получится n/2 молекул ацетил-КоА.

Следовательно, суммарное уравнение р-окисления пальмитиновой кислоты можно написать так:

Пальмитоил-КоА + 7 ФАД + 7 НАД + 7Н2O + 7HS-KoA —> 8 Ацетил — КоА + 7 ФАДН2 + 7 НАДН2.

Баланс энергии. При каждом цикле β-окисления образуются 1 молекула ФАДН2 и 1 молекула НАДН2. Последние в процессе окисления в дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН2 — две молекулы АТФ и НАДН2 — три молекулы АТФ , т. е. в сумме за один цикл образуется 5 молекул АТФ. В случае окисления пальмитиновой кислоты проходит 7 циклов β-окисления (16/2 — 1 = 7), что ведет к образованию 5X7 = 35 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется — молекул ацетил-КоА, каждая из которых, сгорая в цикле трикарбоновых кислот, дает 12 молекул АТФ , а 8 молекул дадут 12X8 = 96 молекул АТФ.

Таким образом, всего при полном окислении пальмитиновой кислоты образуется 35+96=131 молекула АТФ. Однако с учетом одной молекулы АТФ, потраченной в самом начале на образование активной формы пальмитиновой кислоты (пальмитоил-КоА), общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131-1 = 130 молекул АТФ (заметим, что при полном окислении одной молекулы глюкозы образуется лишь 36 молекул АТФ).

Подсчитано, что если изменение свободной энергии системы (ΔG) при полном сгорании одной молекулы пальмитиновой кислоты составляет 9797 кДж, а богатая энергией концевая фосфатная связь АТФ характеризуется величиной около 34,5 кДж, то выходит, что примерно 45% всей потенциальной энергии пальмитиновой кислоты при ее окислении в организме может быть использовано для ресинтеза АТФ, а оставшаяся часть, по-видимому, теряется в виде тепла.

Окисление ненасыщенных жирных кислот

Окисление ненасыщенных жирных кислот в принципе происходит так же, как и окисление насыщенных жирных кислот. Однако здесь имеются некоторые особенности. Двойные связи природных ненасыщенных жирных кислот (олеиновой, линолевой и т. д.) имеют цис-конфигурацию, а в КоА-эфирах ненасыщенных кислот, являющихся промежуточными продуктами при β-окислении насыщенных жирных кислот, двойные связи имеют транс-конфигурацию. Кроме того, последовательное удаление двууглеродных фрагментов при окислении ненасыщенных жирных кислот до первой двойной связи дает Δ 3,4 -ацил-КоА, а не Δ 2,3 -ацил-КоА, который является промежуточным продуктом при β-окислении насыщенных жирных кислот:

Оказалось, что в тканях существует фермент, который осуществляет перемещение двойной связи из положения 3-4 в положение 2-3, а также изменяет конфигурацию двойной связи из цис- в транс-. Этот фермент получил название Δ 3,4 -цис-Δ 2,3 -трансеноил-КоА-изомеразы. Ниже приводится путь окисления олеиновой кислоты, иллюстрирующей назначение дополнительного фермента. При окислении жирных кислот, имеющих две и более ненасыщенные связи, требуется еще один дополнительный фермент β-гидроксиацил-КоА-эпимераза.

Источник: bono-esse.ru